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ABSTRACT

Reliable power supply to end-users is a critical requirement in modern society, and
distribution networks(DN) play a crucial role in delivering electricity to consumers.
Faults in DN can cause power outages and disrupt service to end-users. Therefore,
prompt detection, classification, and identification of fault sections are essential to
ensure a reliable power supply. The latest fault detection, classification, and section
identification methods should be capable of handling the inherent complexities of
the DN and should address the challenges of distributed generation (DG) integration
trends providing significant benefits for utilities and end-users. The use of micro-
Phasor Measurement Units (µPMUs) can enable faster service restoration, improve
fault management, enhance grid reliability and resiliency, provide better monitoring
and control, and lead to cost savings.

A Rules-based Integrated Fault Detection, Classification, and Section Identification
(I-FDCSI) method is proposed in this work for real DN using µPMUs to enable
faster service restorations. This method utilizes a set of rules-based algorithms that
incorporate the knowledge of power system experts to detect, classify, and identify
sections of the fault. The method is based on a comprehensive set of rules developed
through a thorough analysis of the DN topology and fault scenarios. The method
combines the rules-based algorithms with µPMU data to improve fault management
and service restoration processes.

The performance of the proposed method is evaluated using extensive simulations
on IEEE 34 node test feeder, and its superiority over existing methods is demon-
strated through comparative analysis. The simulation results show that the proposed
method accurately detects, classifies, and identifies faults while identifying the faulty
section, allowing for faster service restoration and improved grid reliability and re-
siliency.

The method also demonstrates practical applicability through the validation of re-
alistic µPMU data collected from an IEEE benchmark distribution feeder. The
rules-based approach makes the proposed method easily adaptable to different DN
topologies and fault scenarios. Rules-based I-FDCSI method has significant impli-
cations for the improvement of fault management and service restoration in DN.
The method can be applied to real DN with the installation of optimum number
µPMUs at strategic locations, enabling more efficient fault management and service
restoration. The method also has the potential to be integrated with other grid mon-
itoring and control systems to provide a comprehensive approach to power system
monitoring and management.

The developed method for real DN using µPMUs to enable faster service restorations
provides a novel and effective solution to the challenges of fault detection, classifi-
cation, and section identification. The rules-based approach and integration with
µPMU data result in improved fault management and service restoration. A total



of 24,480 real-time fault scenarios were simulated using DIgSILENT PowerFactory.
The simulation and the validation results of the I-FDCSI algorithm with the real
DN benchmark test feeders demonstrate the practical applicability of the proposed
method in real-world DN.



ACKNOWLEDGEMENT

I am grateful to the Almighty for the abundant grace and blessings bestowed upon
me, which enabled me to successfully complete this journey. I take this opportunity
to acknowledge and express my gratitude to all those who supported and guided us
during my research work.

I would like to express my sincere gratitude to all those who have contributed to the
completion of this research work on "Fault Classification, and Section Identification
in DN for Faster Service Restorations."

First and foremost, I extend my heartfelt appreciation to my supervisor, Dr. Madhu
Sharma, Sr. Associate Professor, Department of Electrical and Electronics Engi-
neering, UPES, Dehradun for her valuable guidance, constant encouragement, and
moral support with my work during all stages. Her suggestions and discussions
shaped this thesis in the right direction for the successful completion of this work. I
would like to thank my Departmental Research Committee members Dr. Deven-
der Kumar Saini, Associate Professor, Department of Electrical and Electronics
Engineering, UPES, Dehradun and Dr. Piyush Kuchhal, professor, Department
of Electrical and Electronics Engineering, UPES, Dehradun for their valuable sug-
gestions, insights and encouragement.

I am thankful to my external mentor Dr. Sajan K Sadanandan, Associate Princi-
pal Researcher-Power System Lead, DEWA R&D Centre, Dubai, UAE for providing
invaluable guidance and support throughout the various stages of my research. His
expertise and encouragement have played a crucial role in shaping this work.

Also , I would like to thank and acknowledge Vetrivel S Rajkumar, PhD Re-
searcher, Intelligent Electrical Power Grids, Department of Electrical Sustainable
Energy, TU Delft and Dr. Peter Palensky, Chair, Intelligent Electrical Power
Grids, Department of Electrical Sustainable Energy, and the ERIGrid 2.0 project
team at TU Delft in the Netherlands, as well as their technical and administra-
tive staff, for their coordination, assistance, supervision, and direction in remotely
accessing the lab facilities to successfully complete this research work.

I would like to extend my appreciation to the Intelligent Electrical Power Grids
Group at Technische Universiteit Delft in the Netherlands for their provi-
sion of essential resources and facilities that facilitated the progress of this research.
Their support and cooperation were crucial in conducting comprehensive simula-
tions and validations on real benchmark DNs utilizing DIgSILENT PowerFactory
and RTDS Simulator.



I would like to acknowledge the financial support received from the Transnational
Access program of the EU H2020 ERIGrid 2.0 project with grant agree-
ment number 870620/Intelligent Electrical Power Grids Group at Tech-
nische Universiteit Delft in the Netherlands. Their investment in this research
has played a crucial role in making this study possible.

I would like to acknowledge the assistance and moral support provided by the mem-
bers of the DEWA R&D Centre-Smart Grid Integration research team.
Their support has significantly contributed to the successful completion of this
project. Their commitment to excellence and their willingness to share their knowl-
edge and expertise have been invaluable.

I am grateful to the power system experts who clarified my doubts and concerns
throughout my PhD Life, especially Professor William H. Kersting (the devel-
oper of IEEE Distribution test feeders and author of the book titled "Distribution
System Modeling and Analysis"), for providing valuable insights on the IEEE dis-
tribution test feeders, load flow validation of the IEEE 34 node test feeder and for
considering my doubts and observations in the published results. Additionally, I
am thankful to my friends and colleagues who generously shared their insights and
expertise during the development of the Integrated Fault Detection, Classification,
and Section Identification (I-FDCSI) method. Their input and feedback have greatly
enhanced the reliability and effectiveness of the approach.

I would also like to extend my appreciation to the authors of relevant scientific pa-
pers, books, and publications whose research and findings have provided the founda-
tion for my work. Their contributions have broadened my understanding and paved
the way for the development of the proposed method. To all the individuals and
entities mentioned above, as well as those who have supported me in various ways
but are not explicitly named, I extend my deepest gratitude. Your contributions
have been invaluable in the successful completion of this research endeavor.

I am profoundly grateful for the unwavering support of my friends and family
throughout my research journey. Their love, sacrifices, emotional support, prayers,
and constant encouragement have been invaluable. To my friends, thank you for
standing by my side and offering insightful perspectives. To my family, your im-
measurable love and unwavering belief in me have been the driving force behind my
success. I recognize that my achievements would not have been possible without
their presence in my life, and I am sincerely thankful for everything they have done.
Their support has not only enabled me to complete my research but has also en-
riched my life in countless ways. As I move forward, I carry their support with me,
fueled by confidence and determination to continue making them proud.

Thank you all for your unwavering support, guidance, and encouragement.

Abdul Haleem M I



Contents

Contents

List of Figures

List of Tables

Abbreviations

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Motivation for Research . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Reseacrh Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Fault Location/Identification methods in DN . . . . . . . . . . . . . . 12

2.2.1 Impedance-Based Methods . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Traveling wave-based Methods . . . . . . . . . . . . . . . . . . 17
2.2.3 Knowledge-based Methods . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Integrated Methods . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 µPMU-based Fault Detection, Classification, and section identifica-
tion in DN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Fault Classification . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Fault Section Identification . . . . . . . . . . . . . . . . . . . . 28

2.4 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Reliability of Power Distribution Networks 34
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



Contents

3.2 Key Reliability Metrices . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 SAIFI (System Average Interruption Frequency Index) . . . . 36
3.2.2 SAIDI (System Average Interruption Duration Index) . . . . . 36
3.2.3 CAIDI (Customer Average Interruption Duration Index) . . . 37
3.2.4 Customer Minutes Lost (CML) . . . . . . . . . . . . . . . . . 37

3.3 Causes of Power Distribution Network Failures . . . . . . . . . . . . . 38
3.3.1 Weather-related Events . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Human Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Cybersecurity Threats . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Overloading and Overvoltage . . . . . . . . . . . . . . . . . . 40

3.4 Reliability Improvement Strategies . . . . . . . . . . . . . . . . . . . 40
3.5 Future Trends and Challenges . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Fault Management Process in DN 46
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Fault Classification . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.3 Fault Section Identification . . . . . . . . . . . . . . . . . . . . 49
4.1.4 Fault Section Isolation . . . . . . . . . . . . . . . . . . . . . . 50
4.1.5 Service Restoration . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Challenges in Fault Management Process and Need for µPMU in DN 51
4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Distribution Network Modelling, Load flow Simulations and Vali-
dation 54
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Distribution Network Selection and Modeling . . . . . . . . . . . . . 58
5.4 Load Flow Simulations and Validations . . . . . . . . . . . . . . . . . 59
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 µPMU-based Realistic Data Generation 64
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.1 µPMU Placement . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.2 Sizing and Placement of DGs . . . . . . . . . . . . . . . . . . 68
6.2.3 µPMU-Based Real-Time Event Data Generation . . . . . . . . 70

6.2.3.1 Realistic Real-Time Events . . . . . . . . . . . . . . 70
6.2.3.2 Data-Generation Settings in DP . . . . . . . . . . . . 71
6.2.3.3 Event Simulations and Plots . . . . . . . . . . . . . . 72

6.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



Contents

6.2.5 Data Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.6 Capacitor Bank Switching . . . . . . . . . . . . . . . . . . . . 97

6.2.6.1 Capacitor Bank Switch-Off Event . . . . . . . . . . . 97
6.2.6.2 Capacitor Bank Switch-On Event . . . . . . . . . . . 97

6.2.7 Fault, Trip, CB Open, and Reclose Events . . . . . . . . . . . 99
6.2.8 DG-Switching Event . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.9 Other Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.10 Experimental Use Case Test . . . . . . . . . . . . . . . . . . . 105

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 I-FDCSI Method Development, Testing and Validation 108
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2 Calculate the Minimum and Maximum Short Circuit Current Ratio

per Phase (MinSCCR and MaxSCCR) of the Network . . . . . . . . . 112
7.3 Fault Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3.1 Rules for Fault Detection without DG and Load Switching . . 117
7.3.2 Rules for Fault Detection with DG . . . . . . . . . . . . . . . 119
7.3.3 Rules for Fault Detection with Load Switching . . . . . . . . . 119

7.4 Fault Classification Algorithm . . . . . . . . . . . . . . . . . . . . . . 120
7.4.1 Rules for Line to Ground Faults (L-G) . . . . . . . . . . . . . 121

7.4.1.1 Rules for A-G Fault . . . . . . . . . . . . . . . . . . 121
7.4.1.2 Rules for B-G Fault . . . . . . . . . . . . . . . . . . 121
7.4.1.3 Rules for C-G Fault . . . . . . . . . . . . . . . . . . 122

7.4.2 Rules for Line to Line Faults (L-L) . . . . . . . . . . . . . . . 122
7.4.2.1 Rules for Line to Line Faults (A-B) . . . . . . . . . . 122
7.4.2.2 Rules for Line to Line Faults (B-C) . . . . . . . . . . 123
7.4.2.3 Rules for Line to Line Faults (C-A) . . . . . . . . . . 123

7.4.3 Rules for Line to Line to Ground Faults (L-L-G) . . . . . . . . 123
7.4.3.1 Rules for Line to Line Faults (A-B-G) . . . . . . . . 124
7.4.3.2 Rules for Line to Line Faults (B-C-G) . . . . . . . . 124
7.4.3.3 Rules for Line to Line Faults (C-A-G) . . . . . . . . 124

7.4.4 Rules for Three Phase Faults (A-B-C) . . . . . . . . . . . . . 125
7.5 Fault Section Identification Algorithm . . . . . . . . . . . . . . . . . 126

7.5.1 Rules for First Line Section (“A”) Fault . . . . . . . . . . . . . 127
7.5.2 Rules for Rule for Fault Sections at MicroPMU Nodes . . . . 127
7.5.3 Rules for Fault Sections at Immediate Line Section after the

DS1 of the Reported MicroPMUs with One Upstream (US)
and One Down Stream (DS) . . . . . . . . . . . . . . . . . . . 128

7.5.4 Rules for Fault Section Identification When MicroPMUs are
Installed at Junction Nodes (with One US and Two DS) . . . 128



Contents

7.5.5 Rules for Fault Sections at Immediate Line Section after the
DS1 of the Reported Junction Node MicroPMUs with One US
and Two DS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5.6 Rules for Fault Sections at Immediate Line Section after the
DS2 of the Reported Junction Node MicroPMUs with One US
and Two DS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.6 Integration of FDCSI Algorithm . . . . . . . . . . . . . . . . . . . . . 130
7.7 Testing and Validation of Algorithms . . . . . . . . . . . . . . . . . . 132

7.7.1 Fault Detection Test . . . . . . . . . . . . . . . . . . . . . . . 133
7.7.1.1 No-Fault Event Test . . . . . . . . . . . . . . . . . . 134
7.7.1.2 Fault Event Test . . . . . . . . . . . . . . . . . . . . 136

7.7.2 Fault Classification Test . . . . . . . . . . . . . . . . . . . . . 137
7.7.2.1 LG Fault . . . . . . . . . . . . . . . . . . . . . . . . 137
7.7.2.2 LL Fault . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.7.2.3 LLG Fault . . . . . . . . . . . . . . . . . . . . . . . . 140
7.7.2.4 LLL Fault . . . . . . . . . . . . . . . . . . . . . . . . 141

7.7.3 Fault Section Identification Test . . . . . . . . . . . . . . . . . 142
7.7.4 I-FDCSI Algorithm Test . . . . . . . . . . . . . . . . . . . . . 142

7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8 Results and Discussions 144
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2 I-FDCSI Method Results . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.2.1 Evaluation of the Method . . . . . . . . . . . . . . . . . . . . 145
8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9 Conclusions and Future Research 148
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.2 Summary of Research Findings . . . . . . . . . . . . . . . . . . . . . 149
9.3 Contribution of the Research . . . . . . . . . . . . . . . . . . . . . . . 149
9.4 Research Contribution to Power Distribution Industry . . . . . . . . . 150
9.5 Practical Applications of the research works . . . . . . . . . . . . . . 151
9.6 Conclusions, Limitations and Future Work . . . . . . . . . . . . . . . 153

9.6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.6.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . 154

A Network line details, load flow results and realistic network events
list 157

B Load flow settings and data generation settings 165



Contents

Bibliography 169



List of Figures

2.1 A general classification of fault location technique in DN . . . . . . . 14
2.2 Impeadance Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Traveling wave Method . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 A general classification of fault location technique in DN . . . . . . . 46

5.1 IEEE 34 feeder modelled in DIgSILENT PowerFactory. . . . . . . . . 60

6.1 Optimal µPMU locations in the test feeder. . . . . . . . . . . . . . . 69
6.2 Capacitor bank switch-off event (µPMU7). . . . . . . . . . . . . . . . 74
6.3 Capacitor bank switch-off event (µPMU11). . . . . . . . . . . . . . . 74
6.4 Capacitor bank switch-on event (µPMU7). . . . . . . . . . . . . . . . 75
6.5 Capacitor bank switch-on event (µPMU11). . . . . . . . . . . . . . . 76
6.6 CB trip event (µPMU1). . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.7 CB trip event (µPMU2). . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.8 CB close event (µPMU1). . . . . . . . . . . . . . . . . . . . . . . . . 77
6.9 CB close event (µPMU2). . . . . . . . . . . . . . . . . . . . . . . . . 78
6.10 DG switch-on event (µPMU11). . . . . . . . . . . . . . . . . . . . . . 78
6.11 DG switch-on event (µPMU1). . . . . . . . . . . . . . . . . . . . . . . 79
6.12 DG switch-off event (µPMU11). . . . . . . . . . . . . . . . . . . . . . 79
6.13 DG switch-off event (µPMU1). . . . . . . . . . . . . . . . . . . . . . . 80
6.14 DG trip event (µPMU5). . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.15 DG trip event (µPMU6). . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.16 Line section de-energization (µPMU1). . . . . . . . . . . . . . . . . . 81
6.17 Line section de-energization (µPMU2). . . . . . . . . . . . . . . . . . 82
6.18 Line section energization(µPMU1). . . . . . . . . . . . . . . . . . . . 82
6.19 Line section energization (µPMU2). . . . . . . . . . . . . . . . . . . . 83
6.20 ABCN load switch-off event (µPMU7). . . . . . . . . . . . . . . . . . 83
6.21 ABCN load switch-off event (µPMU11). . . . . . . . . . . . . . . . . 84
6.22 ABCN load switch-on event (µPMU7). . . . . . . . . . . . . . . . . . 84
6.23 ABCN load switch-on event (µPMU11). . . . . . . . . . . . . . . . . 85
6.24 BCN load trip event (µPMU1). . . . . . . . . . . . . . . . . . . . . . 85
6.25 BCN load Trip Event (µPMU2). . . . . . . . . . . . . . . . . . . . . . 86
6.26 B-N jumper parted open circuit fault (µPMU1). . . . . . . . . . . . . 86



List of Figures

6.27 B-N jumper parted open circuit fault (µPMU2). . . . . . . . . . . . . 87
6.28 BG fault event (µPMU1). . . . . . . . . . . . . . . . . . . . . . . . . 87
6.29 BG fault event (µPMU2). . . . . . . . . . . . . . . . . . . . . . . . . 88
6.30 Tap lowering (µPMU5). . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.31 Tap lowering (µPMU6). . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.32 Tap Raising (µPMU5). . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.33 Tap raising (µPMU6). . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.34 Temporary fault and reclosing (µPMU1). . . . . . . . . . . . . . . . . 90
6.35 Temporary fault and reclosing (µPMU2). . . . . . . . . . . . . . . . . 91
6.36 Transformer outage (µPMU5). . . . . . . . . . . . . . . . . . . . . . . 91
6.37 Transformer outage (µPMU10). . . . . . . . . . . . . . . . . . . . . . 92
6.38 Transformer energization (µPMU5). . . . . . . . . . . . . . . . . . . . 92
6.39 Transformer energization (µPMU10). . . . . . . . . . . . . . . . . . . 93
6.40 Transformer trip (µPMU5). . . . . . . . . . . . . . . . . . . . . . . . 93
6.41 Transformer trip (µPMU10). . . . . . . . . . . . . . . . . . . . . . . . 94
6.42 Off supply complaint (µPMU1). . . . . . . . . . . . . . . . . . . . . . 94
6.43 Off supply complaint (µPMU10). . . . . . . . . . . . . . . . . . . . . 95
6.44 Unbalance voltage complaint (µPMU5). . . . . . . . . . . . . . . . . . 95
6.45 Unbalance voltage complaint (µPMU10). . . . . . . . . . . . . . . . . 96
6.46 Capacitor bank switch-off event (voltage variations). . . . . . . . . . . 98
6.47 Capacitor bank switch-off event (current variations). . . . . . . . . . 98
6.48 Capacitor bank switch-off event: voltage and current variations vali-

dation using real µPMU data [127]. . . . . . . . . . . . . . . . . . . . 99
6.49 Capacitor bank switch-on event (voltage magnitude). . . . . . . . . . 99
6.50 Capacitor bank switch-on event (current magnitude). . . . . . . . . . 100
6.51 Capacitor bank switch-on event (voltage and current magnitude) val-

idation using real µPMU data [127]. . . . . . . . . . . . . . . . . . . . 100
6.52 B-G fault, trip, CB open, and reclose events observed at upstream. . 101
6.53 B-G fault, trip, CB open, and reclose events observed at downstream. 102
6.54 B-G fault, trip, CB open, and reclose events observed at upstream

(Plot a, Plot b) and downstream (Plot c, Plot d) (voltage and current
magnitude) [56]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.55 DG-switching event (voltage and current variations). . . . . . . . . . 103
6.56 DG-switching event observed by the real µPMU [129]. . . . . . . . . . 104
6.57 RTDS testbed for genertaed data validation . . . . . . . . . . . . . . 106

7.1 Block Diagram of I-FDCSI Algorithm. . . . . . . . . . . . . . . . . . 111
7.2 IEEE 34 node model with DGs and µPMU locations. . . . . . . . . . 111
7.3 Fault detection flow chart. . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4 Fault classification flow chart. . . . . . . . . . . . . . . . . . . . . . . 120
7.5 Fault section identification flow chart. . . . . . . . . . . . . . . . . . . 126
7.6 I-FDCSI Flow Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



List of Figures

7.7 RTDS testbed for I-FDCSI Algorithm validation . . . . . . . . . . . . 132
7.8 Load switching event results from master µPMU. . . . . . . . . . . . 134
7.9 DG switching event simulation results from master µPMU. . . . . . . 134
7.10 Tap change event simulation results from the master µPMU. . . . . . 135
7.11 Capacitor switching simulation results from master µPMU. . . . . . . 135
7.12 A-B-C fault detection simulation results from the master µPMU. . . . 136
7.13 A-B-C fault detection simulation results from the nearest µPMU. . . 137
7.14 LG fault classification simulation results from the master µPMU. . . 138
7.15 LG fault classification simulation results from the nearest µPMU. . . 138
7.16 LL fault classification simulation results from the master µPMU. . . . 139
7.17 LL fault classification simulation results from the nearest µPMU. . . 139
7.18 LLG fault classification simulation results from the master µPMU. . . 140
7.19 LLG fault classification simulation results from the nearest µPMU. . 140
7.20 LLL fault classification simulation results from the master µPMU. . . 141
7.21 LLL fault classification simulation results from the nearest µPMU. . . 141

B.1 Load flow basic settings. . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.2 Load flow iteration control settings. . . . . . . . . . . . . . . . . . . . 166
B.3 RMS Simulation basic settings. . . . . . . . . . . . . . . . . . . . . . 166
B.4 Data generation step size settings1. . . . . . . . . . . . . . . . . . . . 167
B.5 Data generation step size settings2. . . . . . . . . . . . . . . . . . . . 167
B.6 Run Simulation Settings. . . . . . . . . . . . . . . . . . . . . . . . . . 168



List of Tables

2.1 Comparison of different fault location methods. . . . . . . . . . . . . 24

5.1 Line-to-neutral voltage error deviation from the IEEE published results. 61
5.2 Line-to-neutral angle error deviation from the IEEE published results. 61
5.3 Line current error deviation from the IEEE published results . . . . . 62
5.4 Line current angle error deviation from the IEEE published results. . 62
5.5 Load flow results from DP model vs. IEEE published results (in

brackets). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Investigations on optimal µPMU placements in IEEE 34 node feeder. 68
6.2 DG modeling parameters. . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Event category chart and their plots. . . . . . . . . . . . . . . . . . . 75
6.4 Line currents measured at master µPMU . . . . . . . . . . . . . . . . 104
6.5 Use case test results: fault and no-fault event classification. . . . . . . 106

7.1 Maximum short circuit currents that can be monitored by each µPMU.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Fault detection algorithm test results. . . . . . . . . . . . . . . . . . 133
7.3 Fault classification algorithm test results. . . . . . . . . . . . . . . . 142
7.4 Fault section identification algorithm test results. . . . . . . . . . . . 142
7.5 I-FDCSI algorithm test results. . . . . . . . . . . . . . . . . . . . . . 143

8.1 Evalaution of results. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.1 Line section representation for IEEE 34 node model in DIgSILENT
Powerfactory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2 Load flow results from DP model (node voltages and angles per phase).159
A.3 Load flow results from DP model (line currents and angles per phase). 160
A.4 List of realistic real-time events generated using DP in the test feeder 161
A.5 List of realistic real-time events generated using DP in the test feeder

Cont. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.6 List of realistic real-time events generated using DP in the test feeder

Cont. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.7 List of realistic real-time events generated using DP in the test feeder

Cont. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



Abbreviations

DN Distribution Network
DER Distributed Energy Resources
DP DIgSILENT PowerFactory
RTDS Real-time Digital Simulator
SCADA Supervisory Control and Data Acquisition
RTU Remote Terminal Unit
GPS Global Positioning System
DCC Distribution Control Centre
DG Distributed Generation
LV Low Voltage
DT Distribution Transformer
OHL Overhead Lines
SLG Single Line to Ground
IEEE Institute of Electrical and Electronics Engineers
PES Power and Energy Society
DSAC Distribution System Analysis Committee
NR Newton–Raphson
CSORI Complete System Observability Redundancy Index
CI Cost Index
CB Circuit Breaker
US Upstream
DS Downstream
XF10 Line Transformer
S Capacitor Shunt Capacitor
SL Spot Load
DL Distributed Load
MCB Miniature Circuit Breaker



Abbreviations

MinSCC Minimum Short Circuit Current
MaxSCC Maximum Short Circuit Current
IaMeasi Measured Line Current of phase A
IbMeasi Measured Line Current of phase B
IaMeasi Measured Line Current of phase C
ROCOF Rate of Change of Frequency
RMU Ring Main Unit
FI Fault Indicator
RFI Remote Fault Indicator
VR Voltage Regulator
µPMU Micro-Phasor Measurement Unit
PMU Phasor Measurement Unit
LVDB Low Voltage Distribution Board
DT Distribution Transformer
L-G Line to Ground
L-L Line to Line
L-L-G Line to Line to Ground
L-L-L Line to Line to Line
A Phase A
B Phase B
C Phase C
G Ground
MinSCCR Minimum Short Circuit Current Ratio
SAIFI System Average Interruption Frequency Index
SAIDI System Average Interruption Duration Index
CAIDI Customer Average Interruption Duration Index
CML Customer Minutes Lost
FD Fault detection
FC Fault Classification
FSI Fault Section Identification
FL Fault location
ADN Active Distribution Network
FTU Feeder Terminal Unit
FDCSI Fault Detection, Classification and Section Identification
I-FDCSI Integrated Fault Detection, Classification and Section Identification



Chapter 1

Introduction

1.1 Introduction

The reliability of distribution networks is essential for maintaining continuous power

supply, minimizing financial losses, enhancing quality of life, and fostering sustain-

able development. Various events and procedures are in place within power dis-

tribution networks to ensure seamless operation and reliable electricity delivery.

These events are further classified into normal and abnormal events. Faults, denot-

ing abnormal events within or outside the network, can potentially interrupt power

supply. Internal faults occur within network components like transformers, cables,

etc, typically due to equipment malfunctions or short circuits. In contrast, exter-

nal faults originate from environmental factors like lightning strikes or interference

from vegetation. Normal events or planned switching operations entail connecting

or disconnecting network components to regulate voltage levels and optimize system

performance. Capacitor switching, a type of normal event, facilitates voltage regula-

tion and improves power factor, while reactor switching regulates voltage levels and

mitigates fault currents. Tap changing, meanwhile, adjusts transformer winding tap

1
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positions to regulate voltage levels and accommodate load variations, ensuring con-

sistent voltage supply to consumers and optimizing network functionality. Normal

events aim to enhance network performance. However, fault events in distribution

networks can lead to power outages and disrupt service, underscoring the impor-

tance of promptly detecting, classifying, and identifying faults to maintain a reliable

power supply.

Fault detection, classification, and section identification (FDCSI) in distribution net-

works have been extensively studied in the literature. However, traditional FDCSI

methods have limitations in terms of accuracy, speed, and practical applicability. For

instance, conventional fault detection methods based on voltage and current mea-

surements using supervisory control and data acquisition (SCADA) systems have

limitations in terms of accuracy, especially for high-impedance faults and incipient

faults. Additionally, traditional methods are inadequate for real-time applications

given the current trends in distributed generation (DG) penetration and their in-

herent slow response time.

Micro-Phasor Measurement Units (µPMU) have emerged as a promising technology

for real-time monitoring and control of power systems. µPMUs provide high-speed

synchronized voltage and current measurements, enabling the detection and clas-

sification of faults with high accuracy and speed. The use of µPMUs for FDCSI

in distribution networks has been proposed in the literature, with promising re-

sults. This thesis proposes a rules-based Integrated Fault Detection, Classification,

and Section Identification (I-FDCSI) method for real distribution networks using

µPMUs to enable faster service restorations. The proposed method is based on a set

of rules-based algorithms that incorporate the knowledge of power system experts to

detect, classify, and identify faults. The proposed method combines the rules-based

algorithms with µPMU data to improve fault management and restoration.
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The limitations of conventional FDCSI methods have led to the development of

new methods based on advanced sensing technologies, such as µPMUs. µPMUs are

devices that provide synchronized voltage and current measurements at high speeds.

µPMUs are capable of measuring voltage and current phasors with sub-millisecond

accuracy, enabling real-time monitoring and control of power systems. The use of

µPMUs for fault location in distribution networks has been proposed in the literature

as a promising solution to the limitations of traditional fault location methods.

Based on the synchronized readings from the µPMUs, novel fault detection and

classification algorithms have been developed in several research papers. These

techniques use high-resolution synchronized data from the µPMUs to identify the

problematic area of the distribution network and to detect and categorize various

fault kinds. However, the majority of these techniques rely on machine learning algo-

rithms, which demand a significant quantity of training data and computing power.

The caliber and accessibility of the training data have an impact on these methods’

success as well. Particularly when noise and measurement errors are present, tradi-

tional defect detection and classification approaches frequently have poor accuracy

and lengthy detection times [1]. µPMUs have become a promising technology in

recent years for enhancing the precision and timeliness of fault detection and loca-

tion in DN [2,3]. Recent years have seen a significant amount of study on the use of

µPMUs for DN fault detection and classification [4-6]. However, there is still a need

for fault detection and classification methods for DN that are more precise and effec-

tive, especially when there is noise, measurement inaccuracy, or distributed energy

resources (DERs) present [1]. The author created realistic µPMU data for various

real-time events in an unbalanced distribution network to simulate the dynamics of

the real grid because real µPMU data were not readily available [4]; the generated
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realistic data was then verified using publicly available real µPMU data. For sev-

eral algorithms created as part of this research, the dynamics of fault events and

line current fluctuations were used as thresholds. The Integrated Fault Detection,

Classification, and Section Identification (I-FDCSI) approach for real DN employing

µPMUs is established in this study on the basis of rules. The I-FDCSI approach is

based on a set of guidelines created with the help of subject-matter expertise and

statistical analysis of the measured data. The suggested method may deliver precise

fault detection, classification, and section identification results with a short response

time, and it does not require a lot of training data or computational resources. The

proposed method’s effectiveness has been evaluated in comparison to the widely used

fault detection and classification techniques on a real-world benchmark distribution

network.

1.2 Problem Statement

The integration of distributed generation (DG) systems and network topology mod-

ifications pose additional challenges to fault detection, classification, and section

identification in power distribution networks. This system changes and disturbances

introduce complexities that traditional fault management methods struggle to ad-

dress, leading to prolonged service restoration times and reduced operational effi-

ciency. Therefore, there is an urgent need for an advanced fault management ap-

proach that can effectively handle these changes and disturbances while expediting

service restoration in distribution networks.

Existing fault management methods often fail to adapt to the dynamic nature of

distribution networks due to the limited consideration of system changes and distur-

bances [7]. The integration of DGs introduces new fault scenarios, such as islanding
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and reverse power flow, which require specialized fault detection and classification

techniques [8]. Furthermore, network topology modifications, such as line recon-

figuration or the addition/removal of network elements, can affect fault location

identification and section identification accuracy.

To overcome these challenges, a comprehensive solution is required that can seam-

lessly accommodate system changes and disturbances in fault detection, classifica-

tion, and section identification. This solution should incorporate advanced algo-

rithms that can analyze and interpret high-resolution synchronized measurements

obtained from measurement devices such as micro-phasor measurement units (µPMUs)

and effectively adapt to the presence of DGs and modified network topologies. By

addressing these challenges, the solution will enhance the accuracy, speed, and

adaptability of fault management in distribution networks, thereby reducing ser-

vice restoration time and improving overall operational efficiency.

1.3 Motivation for Research

The motivation for conducting this research lies in the critical need to enhance the

fault management capabilities in power distribution networks, particularly in the

context of system changes and disturbances such as the integration of distributed

generation (DG) systems and network topology modifications. The traditional fault

management methods employed in distribution networks often struggle to adapt to

these changes, leading to prolonged service restoration times, decreased reliability,

and operational inefficiencies [9].

The integration of DG systems introduces new fault scenarios and complexities

that demand advanced fault detection, classification, and section identification tech-

niques. The presence of DGs can lead to islanding conditions, reverse power flow,
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and changes in fault characteristics, necessitating specialized fault management ap-

proaches. Moreover, network topology modifications, including line reconfiguration

and the addition or removal of network elements, further complicate fault location

and section identification [10].

By addressing these challenges, the proposed research aims to provide an integrated

fault detection, classification, and section identification (I-FDCSI) method specif-

ically designed to handle system changes and disturbances. The development of

this method is motivated by the desire to overcome the limitations of traditional

fault management approaches and enable faster service restoration in distribution

networks.

The research motivation is driven by the potential benefits that can be achieved

through the implementation of an advanced fault management solution. By effec-

tively handling system changes and disturbances, the I-FDCSI method can enhance

fault detection accuracy, streamline fault classification, and improve fault location

and section identification. Consequently, this will contribute to minimizing service

restoration time, reducing customer disruptions, and optimizing the reliability and

resiliency of distribution networks.

Furthermore, the research motivation is strengthened by the growing importance

of sustainable and distributed energy resources. The integration of DG systems is

becoming increasingly prevalent, necessitating robust fault management strategies.

By addressing the unique challenges posed by DG integration and network topology

modifications, the proposed research aligns with the broader objective of facilitating

the seamless integration of renewable energy sources into distribution networks.

Overall, the research motivation is grounded in the pressing need to develop ad-

vanced fault management techniques that can effectively handle system changes and
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disturbances in power distribution networks. By addressing these challenges, the

research aims to contribute to improved service restoration, enhanced reliability,

and the efficient operation of distribution networks in the face of evolving energy

landscapes.

1.4 Reseacrh Objectives

The main objective of this research is to develop and validate an Integrated Fault

Detection, Classification, and Section Identification (I-FDCSI) method that can ef-

fectively handle the effects of system changes and disturbances, such as the inte-

gration of DGs and network topology modifications. The I-FDCSI method aims

to provide accurate fault detection and classification in the presence of DG-related

fault scenarios and adapt to modified network topologies for reliable fault location

and section identification. By achieving these goals, the method will contribute to

faster service restoration, enhanced fault management, and improved resiliency in

power distribution networks facing system changes and disturbances. The research

objectives are systematically outlined as follows.

• Modelling and simulation of a standard IEEE distribution network for the data

generation of steady state and dynamic fault conditions.

• Validation of the model accuracy through comparison of load flow study results

with the benchmark load flow results published by IEEE Distribution System

Analysis Subcommittee and investigation of the effects of system changes and

disturbances like the integration of DGs and network topology modifications.
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• To develop an accurate and reliable Integrated method for Detection, Fault

Classification and Section Identification (I-FDCSI) in DN using topology-

focused rules-based Algorithms considering the effects of system changes and

disturbances like the integration of DGs and network topology modifications.

• Validation and testing of developed I-FDCSI method with the available or

standard real distribution network data.

These research objectives aim to address the limitations of traditional fault manage-

ment approaches and provide a comprehensive solution that can effectively handle

system changes and disturbances in power distribution networks. By achieving these

objectives, the study seeks to enhance fault management capabilities, reduce service

restoration time, improve reliability, and optimize the operational efficiency of dis-

tribution networks.

1.5 Thesis Outline

This thesis consists of nine chapters including the present Chapter 1 of introduction

to the research topic. This chapter describes the problem statement, the research’s

motivation, and the thesis’s outline. Chapter 2 provides a review of past literature

related to fault location/identification in DN and the µPMU-based Fault detection,

classification and section identification techniques and their research gaps along with

the objectives of this research works. Chapter 3 explains the reliability of the power

distribution networks. Chapter 4 describes the fault management process in DN.

The detailed modelling of the distribution network, load flow simulations and their

validations are presented in Chapter 5. The µPMU-based realistic data generation

along with the experimental test and validation is discussed in Chapter 6. Chapter 7
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defines the I-FDCSI method development, testing and validation. The results of the

developed I-FDCSI method is discussed in Chapter 8. Chapter 9 summarizes the

conclusions and research contributions of the current work and presents practical

applications and future work.



Chapter 2

Literature Review

2.1 Introduction

In the realm of electrical power distribution, the ability to swiftly and accurately

identify faults is of paramount importance for ensuring a reliable and uninterrupted

power supply. Faults in distribution networks can cause power outages, and equip-

ment damage, and pose safety risks. Therefore, the development and implementa-

tion of effective fault location and identification methods are crucial for the efficient

operation and maintenance of distribution networks.

Faults in distribution networks can arise from various sources, including equipment

failures, insulation breakdowns, conductor faults, and external influences such as

lightning strikes or vegetation contact. Traditional fault location methods typically

involved manual inspections and time-consuming trial-and-error procedures. How-

ever, modern advancements in technology have revolutionized fault detection and

localization techniques. Today, distribution networks are equipped with intelligent

10
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monitoring systems, sensor devices, and communication networks that enable real-

time fault detection and localization. These systems collect data from multiple

points within the network, utilizing various sensing technologies such as current and

voltage measurements, wavelet analysis, and high-frequency transient analysis. The

acquired data is then processed and analyzed using sophisticated algorithms and

fault identification techniques.

The implementation of efficient fault location/identification methods brings several

significant advantages to power distribution companies, operators, and maintenance

personnel. Firstly, these methods enable rapid fault detection and localization, lead-

ing to faster response times and reduced downtime. By quickly identifying the fault’s

location, operators can dispatch repair crews to the precise area, minimizing the time

required for fault isolation and restoration of the power supply. Moreover, accurate

fault location plays a vital role in optimizing maintenance activities. By precisely

pinpointing the fault’s location, maintenance personnel can focus their efforts on

the affected section, reducing unnecessary inspections and repairs elsewhere in the

network. This targeted maintenance approach improves the overall efficiency of

maintenance operations and helps allocate resources more effectively. Additionally,

fault location/identification methods aid in improving the safety of distribution net-

works. By promptly identifying faults, potential safety hazards can be mitigated

or isolated, preventing electrical accidents, fires, and other dangerous situations.

Furthermore, these methods assist in identifying recurring fault patterns, enabling

operators to analyze the root causes and take proactive measures to prevent future

faults, thus enhancing the overall reliability of the distribution network.

The fault location/identification methods are crucial for the reliable and efficient

operation of distribution networks. Modern technologies and advanced algorithms
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have transformed fault detection and localization, enabling real-time analysis of net-

work data to swiftly identify faults and their precise locations. The implementation

of these methods brings benefits such as reduced downtime, optimized maintenance

activities, and improved safety. As the demands on distribution networks continue

to grow, investing in and refining fault location/identification methods will play a

pivotal role in ensuring a reliable power supply and maintaining the integrity of

distribution networks.

2.2 Fault Location/Identification methods in DN

The DNs are designed as either radial or ring connections with overhead or under-

ground and mixed modes. The associated consumer or customer loads are affected

by the sustained DN failures. Customer Minutes Lost (CML) is the term used

to refer to this. One of the most significant reliability indices for power providers

is the duration of power outages. Therefore, utilities that restore electricity more

quickly are included in those considered to be reliable. Most developed and emerg-

ing nations and cities have access to reliable power sources and networks to aid in

their ongoing growth. Power outages result from malfunctions or failures in any of

the associated networks’ components owing to a variety of events, including wear

and tear, lightning surges, human error, and outside forces impacting or harming

the cables or lines. Since customers or consumer loads are directly involved in the

power distribution sector, the network might be complicated and have a high failure

probability. The ring system is introduced together with the FI, which is used for

physical or remote fault identification, to make it easier to restore power supply to

users. However, the majority of power restorations following the occurrence of a

sustained fault are delayed, mostly because the Fault Section identification (FSI)
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process takes too long. It occurs primarily as a result of factors including faulty FIs

and accessibility problems at the station. The fault location (FL) is an estimate of

the distance to the fault location from the feeding point, whereas the fault location

(FSI) is the identification of the faulted segment of the DN in which the fault has

occurred. The distribution system is susceptible to four primary types of faults:

1 Single-Line to Ground (SLG)

2 Line to Line (LL)

3 Double-Line to Ground (DLG or LLG) and

4 Three-line (LLL)

5 Three-line to Ground (LLLG)

As a result of environmental causes or aging, SLG arises at a rate of 70% defects in

DN when any one of the three-phase wires touches the ground [11]. Whenever time

two-phase conductors come into touch with one another, LL faults—which account

for 15% of all DN faults—occur [11]. The DLG fault happens 10% of the time when

any two phases come into contact with the ground [11]. The LLLG fault, which

is referred to as the least frequent fault, occurs at a rate of 5% in DNs [11]. But

because it generates such a large fault current, this defect is more serious. The

feeder circuit breaker breaks the circuit to isolate the problem from a sound section

of the network whenever a fault develops on any point of the conductor, branch, or

equipment in DNs. Customers who are connected to the feeder will experience a

service interruption as a result of the feeder circuit breaker being opened. The result

will be poor service quality and revenue declines for the electricity utility.

So, it is important for utilities to find the defect quickly, isolate it, and restore

service to the customers who were out of service. The effects of service failure will
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be lessened via quicker fault discovery. Direct application of transmission network

fault diagnosis techniques are prevented by the non-homogeneity of DNs, structural

unbalance, circuit tapings or laterals, and penetration of Distributed Generators

(DGs). These complications are referred to as intrinsic complications. In order

to overcome the difficulties of DNs, various fault identification/location techniques

are investigated. The following categories best describe fault identification/location

techniques:

1 Impedance-based method

2 Traveling wave-based method

3 Knowledge-based method and

4 Integrated Method

Figure 2.1: A general classification of fault location technique in DN

So far, many fault-identifying and locating techniques have been reported in the

DNs. Different combinations and extended versions of the main class of fault location

shown in Figure 2.1 were investigated in the literature. However, when the DGs are

incorporated, the grids make the system more complex, and the existing protective

mechanisms are impacted. Finally, the accuracy of fault identification approaches

suffers. As a result, more accurate fault-locating or identification strategies must be

investigated by addressing all of the intrinsic DN characteristics.
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A comparative analysis of the available fault identification or locating methods is

performed, and existing challenges and future scopes are highlighted from the ex-

amined literature.

2.2.1 Impedance-Based Methods

The impedance approach is a simple and inexpensive way of identifying faults. It

locates the fault by using the impedance value measured at the node [11]. This ap-

proach measures current and voltage at both line ends. As a result, it can be further

subdivided into one-end and two-end techniques [11]. The first method employs

feeder-end voltage and current. According to [12, 13], one end technique employs a

relatively basic algorithm and does not require communication links for data collec-

tion, but fault locating accuracy is hampered by inherent behaviors such as system

non-homogeneity, the effect of changeable loads, erroneous relay measurements, and

so on. Two-ended techniques may be more accurate. Nevertheless, applying these

methods to identify faults requires more data from both ends of the connection.

The impedance-based method is shown in figure 2.2 using a simple circuit.

Figure 2.2: Impeadance Method
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Based on Ohm’s Law, voltage and current from the measurement node can be used

to find fault distance fd using the equation 2.1.

fd = (Vf/(If × Zl )) (2.1)

where Vf and If correspond to the voltage and current during fault, Zl is the line

impedance per unit length, fd is the fault distance from the measured node, Vs is

the source voltage and Zs is the source impedance [1].

A new impedance-based fault location technique is developed in [14, 15] by consider-

ing multiple estimation problems and inherent distribution network characteristics,

but only SLG faults were investigated. [16] evaluated a basic impedance-based

automatic fault location technique using both induction machine-based and syn-

chronous DGs in different nodes, with static loads and only SLG faults. [17, 18]

use Phasor Measurement Units (PMUs) to locate SLG faults, but the distribution

grid’s inherent properties, DG penetration, dynamic loads, and other types of faults

are not taken into account. All fault types were determined in [19] by taking into

account static loads and using separate equations for each type of fault. In [20], sep-

arate Equations were used to analyze SLG and LLLG while taking into account the

DN’s non-homogeneous behavior, and faults were located using simulated and fault

recorder data. [21] Demonstrates a fault location method based on recorded volt-

ages and currents from Power Quality (PQ) monitoring and substation relays, with

investigation limited to SLG and DLG. [22] developed a generalized method that

takes into account load variations and measurement errors, but the presence of DGs

and line capacitance can be explored further. [23] presented an extended impedance-

based location technique that took into account dynamic loads, unsymmetrical lines,

and laterals, but it did not address line capacitance. Some studies [24-25] looked
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at very simplified networks with static loads in the presence of synchronous-based

DGs.

According to the review, the main disadvantages of the impedance-based fault iden-

tification technique are multiple estimations and a continuous iterative process. The

accuracy of these methods is affected by the presence of DGs, laterals, line parame-

ters, dynamic behavior of the loads, noise in data measurements, and issues caused

by the non-homogeneous nature of DNs.

2.2.2 Traveling wave-based Methods

The travelling wave method is widely used in transmission lines. It is based on

the principle of transmission and reflection of the travelling waves between the line

terminal and the fault location.

Figure 2.3: Traveling wave Method

Figure 2.3 shows a representation of traveling wave method, where t1 is the time

taken by the fault wave to travel from measuring node to the faulty point, t2 is the

time taken by the reflected wave to travel from the faulty point to the measuring

node and v is the propagation velocity. The distance to the fault dF is found using

the equation 2.2.
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dF = v(t2 − t1)/2 (2.2)

A method for a branched network is proposed that can overcome the limitations

of the traveling wave-based method by using the parameters of fault-induced high-

frequency transients [26]. Fault recorders are installed on all branches to assist

in locating faults anywhere on the DN or on any branch. The characteristics and

frequency of fault transients are determined using the continuous Wavelet Transform

(CWT) and recorded voltage. It also investigates the possibility of a fault at various

locations in order to precisely locate the fault [27]. As an improvement to the

method described in [27], the shortcomings are investigated, and an algorithm for

constructing a specific mother wavelet from fault voltage transients is proposed. It

produces satisfactory results for non-homogeneous DNs [28]. As an improvement

to the method proposed in [28], [29] incorporates CWT frequency and time-domain

information. This method was experimentally tested, and the results show significant

improvements in the method’s accuracy [28]. However, the addition of any laterals to

the DN has an effect on the performance of algorithms. This method was validated

and tested to ensure its use in real DNs for locating faulty sections and restoring

service. The review demonstrates that these methods rarely rely on network data.

This includes the line impedance and the load requirements. As a result, these

techniques are unresponsive to mathematical inaccuracies. According to studies,

these methods provide highly accurate results for locating faults in distribution and

transmission networks with a single line. However, the situation is different for DNs,

which have many laterals and load taps with shorter lines of connection, resulting in

the reflection of traveling waves. As a result, while using these algorithms, the DN

requires measurement devices. Because most DNs have numerous load taps, laterals,

and branches, traveling wave-based methods face difficulties in the fault location

process due to the possibility of wave reflection on the branching or joining points.



Chapter II. Literature Review 19

This results in an incorrect estimation of fault locations. As a result, researchers are

continuing to work on these methods in order to find a better solution for accurately

locating the fault in DNs with many complexities.

2.2.3 Knowledge-based Methods

These methods can be used for complex fault current input and output in DGs and

feeders. Individual multi-layer neural networks are trained for different fault classes

in order to calculate the distance between the DGs and all sources. It is proposed to

use an SVM classifier to avoid the complex nature of the fault estimation problem by

properly classifying the types of faults and source fault levels [31]. In this case, the

measured steady-state current and voltage (three phases) are fed into an individually

trained network for each class of fault to calculate the fault reactance. The wavelet

transform is used to extract the high- and low-frequency elements of voltage and

current transients, and the SLG fault is located by integrating it with a fuzzy neural

network [32]. Support vector regression is used to establish a link between current

and voltage transients and fault location (SVR). The fault location is estimated

by integrating the Discrete Wavelet Transform’s time, amplitude, and frequency

characteristics (DWT). For very small networks, the results of SVR techniques are

preferable to those of ANN-based techniques with fewer training samples [33]. The

measured transient voltage is decomposed using the wavelet transform, and the

resulting data is fed into the neural network to locate the fault [34]. The wavelet

transform is used in [35] to extract the required features from measured current

transients. The features for training neuro-fuzzy logic are then used to identify the

section of the network where the fault has occurred. The same technique can be

used to locate and identify faulty DN sections.
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Advancements in automation technologies have opened up new avenues to enhance

fault location methods in ADNs. Intelligent location methods, utilizing feeder termi-

nal unit (FTU) measurement fault data, have been proposed. Commonly employed

intelligent location methods include the cuckoo algorithm [136], slime mould algo-

rithm [137], artificial intelligence algorithm [138], Pet nets [139], linked-list method

[140], particle swarm optimization [141], genetic algorithm(GA) [142], Improved ge-

netic algorithm [143], quantum genetic algorithm [144], multi-verses optimization

[145], etc. These methods establish a relationship function between fault feeders

and the uploaded current code information of the FTU. The fault location is then

treated as an optimization problem, integrating the fault evaluation function with

intelligent algorithms. Among these approaches, GA stands out as one of the most

widely used methods due to its parallelism and self-organization. It is a successful

heuristic search technique commonly employed for fault location problems. Emu-

lating the process of iterative evolution through genetic changes, the GA algorithm

initiates a random search using stochastic-generated finite individuals. The solution

evolves with each generation until convergence is achieved [146]. According to the

review, the advantages of knowledge-based methods are that they produce relatively

accurate results and are quick to implement. The knowledge-based method’s main

limitation is that it must be trained on a large number of real or simulated faults. In

addition, if the topology of the DN is changed, whether minor or major, the training

phase must be repeated several times to obtain accurate results. Aside from these

issues, the knowledge-based method calculates the fault distance from the substation

or measuring point rather than locating the fault. Multiple fault location estima-

tions may exist in DNs with complex topologies. As a result, these issues must be

addressed when dealing with networks in this category.
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2.2.4 Integrated Methods

These are various fault-locating techniques combined. Techniques, such as multi-

ple estimations, are combined to overcome their limitations. [36] described a fault

location technique that combined impedance and voltage sag. In [37], current and

voltage data from Advanced metering infrastructure were compared with simulated

data to locate faults, whereas in DN [38], stored current and voltage data from a

digital fault recorder was used to locate faults.

An advancement in compressive sensing fault location is presented in [39], where

the voltage vector was generated by using voltage data collected from a few network

nodes using smart meters with fewer dimensions than the impedance matrix. In

addition, by concatenating the rows of the impedance matrix, a current vector was

generated.

[40] shows a compressive sensing method for calculating the current vector using a

voltage and impedance matrix. If smart meters are not used on all nodes, the current

vector can be determined using the norm minimization method. An integrated

technique is used in [41] to classify the type of fault and estimate its location. For

classification, a learning algorithm was used, and an impedance-based technique was

used to pinpoint the exact location of the fault. [42] suggests combining traveling

waves, impedance, and knowledge-based techniques. To detect and classify the

fault, the wavelet transform is used. The ANN method is used to locate the faulty

network segment, and an impedance-based technique is used to locate potential

fault locations. The exact location of the identified faulty portion is confirmed by

matching it with the various fault locations.

By combining an impedance technique and a traveling wave-based algorithm to

calculate the distance of the fault and identify possible locations, multiple location



Chapter II. Literature Review 22

estimation issues are avoided [43]. The superior components (frequency) of the fault

transients are discovered using transient-based analysis. In the frequency and time

domains, the correlation method is used to find the correct results.

[44] proposes a method that is a hybrid of traveling wave and impedance-based

methods. The frequent The fault path is identified by extracting components of the

traveling waves using DWT. When a fault is discovered, non-affected portions of the

network are reduced to equivalent impedances. The fault is located by using the iden-

tified path, an impedance-based algorithm, and the substation measurements. This

method can also be used to identify faulty sections in DNs with multiple branches

because the fault path can be easily routed from the fault transient waves.

[45] employs an impedance-based algorithm to identify potential fault locations.

After that, two techniques are used to pinpoint the exact location of the fault. The

simulation is performed in both methods for similar fault types at each fault location

and the voltage is recorded. The first technique compares simulated and measured

values to determine the exact location, whereas the second technique uses a matching

analysis on the frequency spectrum of simulated fault samples and recorded fault

transients.

The research presented in [46] proposes a method for monitoring voltage using smart

meters. This will provide information about the section where the voltage is lower

due to a fault occurrence. For identifying potential locations, an impedance-based

algorithm is used. It can easily filter the number of fault locations because it is an

iterative process.

However, its performance on high-impedance faults remains unknown. An impedance-

based method for DNs with DGs is proposed in [47]. The impedance-based algo-

rithm is used to find the fault current. During faults, the bus voltage and voltages
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at each DG are calculated. To determine the correct location, the smallest difference

between all identified locations is found using measured and calculated voltages.

For almost all integrated methods, with or without DGs, measurement devices at

various points on the DN are required. According to studies, the majority of DNs in

the presence of DGs have an impact on the network’s security schemes. This further

complicates the fault-finding process by providing incorrect information from the

connected measuring and indicating devices. When compared to other methods, it

produces satisfactory results even for complex DNs.

Despite having more requirements, integrated methods can overcome the limitations

of other methods. The main benefit is that it can outperform multiple fault location

estimations. This is critical during the fault detection process. If the fault location

techniques produce multiple estimates, it is difficult for the utility’s respective staff

to precisely locate or identify it. As a result, locating the true fault location takes

time once more. Meanwhile, the service failure will affect consumers connected to

the corresponding network. These methods also require training data, high sampling

rate measurements, and sparse voltage measurements. Despite having more require-

ments, these Methods can help to avoid confusion over multiple fault locations.

Both the Distribution Control Room Engineer and the Field Engineer or Operator

will face challenges during this situations. During multiple estimations, they have

a difficult time identifying the fault location or faulty section identification during

the supply restoration process. This may result in improved service. Prolonged

service interruptions due to the delay in fault section Identification adversely affect

the reliability indices of the power utilities. To address these issues, more precise

and reliable integrated methods must be investigated.

The comparison of different fault location/identification techniques is briefly de-

scribed in Table 2.1.
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Table 2.1: Comparison of different fault location methods.

Methods Requirements Advantages Limitations

Impedance
Methods[12-25] Feeder V and I

Applicable to both
modern and

traditional DNs

Multiple
estimations

DN Configuration
Line data

Traveling wave
Methods[26-29] DN Configuration Unaffected by the

parameters of DN
Difficulties in DNs
with complexities

Large data samples

Offers satisfactory
solutions to most
of the limitations

of impedance
methods

Communication

Knowledge-based
Methods[30-35] &

[136-146]
Feeder V and I

Performance
depends on the

quality and
quantity of

training data

DN configuration
Executes in faster

mode Gives
Accurate results

Line data

Need to train again
whenever DN

configuration gets
modified

Large data samples
Communication

Integrated
methods[36-47] Feeder V and I

Overcomes the
limitations of

multiple
estimations

Need to Integrate
all the required

methods to get the
desired results

DN configuration

Line data Applicability in
complex DN

Large data samples
Communication

Different types of fault location and identification techniques were reviewed and com-

pared, including impedance, traveling wave, knowledge-based, and integrated meth-

ods. Based on the foregoing, it can be concluded that locating and identifying faults

in traditional, complex, and modified DNs with high accuracy remains a promising

field, despite the fact that most available techniques face various types of challenges.

High installation and maintenance costs for Distribution Substation Automation,
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the inherent properties of distribution grids, the presence of Distributed Generation

Sources, frequent changes in network topologies, and so on are the primary chal-

lenges. Among the techniques examined, integrated methods are more accurate and

have the potential to overcome the evolving challenges of DN. As a result, it is nec-

essary to investigate the enhancement of existing fault location and identification

techniques or to develop an integrated technique that uses time-synchronized high-

resolution measurements from new-generation measurement devices such as PMUs

to address all of the newly evolved DN challenges in order to meet and improve

reliability indices.

2.3 µPMU-based Fault Detection, Classification, and

section identification in DN

The efficient and reliable operation of power systems is crucial for the modern world’s

electricity supply. Fault detection, classification, and section identification play piv-

otal roles in ensuring the stability and resilience of power grids [48]. Traditional

methods relying on supervisory control and data acquisition (SCADA) systems,

however, face limitations such as low sampling rates and insufficient coverage [49].

To overcome these challenges, researchers have turned to micro-Phasor Measurement

Units (µPMUs) as a promising solution for fault analysis in DNs.

By exploring the current state-of-the-art research, the review aims to identify the

methodologies, algorithms, and techniques used in this field, as well as the challenges

and opportunities for further advancements. The focus will be on signal process-

ing techniques for feature extraction from µPMU measurements, machine learning

and pattern recognition algorithms for fault classification, and algorithms for fault
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section identification. Additionally, the review will investigate the integration of

µPMU data with other sources of information, such as SCADA measurements and

communication networks, to enhance the accuracy and reliability of fault detection

and classification.

Through a thorough evaluation of different approaches, the review will highlight

their strengths, limitations, and potential areas for improvement. It will serve as

a valuable resource for researchers, engineers, and practitioners involved in power

system monitoring, control, and protection, providing them with a comprehensive

understanding of the current knowledge and advancements in µPMU-based fault

analysis. Furthermore, the review will identify research gaps and propose future

directions, including the exploration of advanced fault detection algorithms capable

of handling complex scenarios and the integration of emerging technologies like ar-

tificial intelligence and big data analytics into µPMU-based fault diagnosis systems.

Ultimately, this review seeks to contribute to the development of more accurate, reli-

able, and efficient fault detection, classification and section identification techniques

in DNs, leveraging the capabilities of µPMU technology.

2.3.1 Fault Detection

Fault detection in distribution networks (DN) is a critical task for ensuring a reliable

and efficient power supply. µPMUs are emerging as a promising technology for fault

detection in DNs [50]. µPMUs can provide high-accuracy, synchronized, and time-

stamped measurements of voltage and current phasors, which can be used for fault

analysis [51]. Several studies have been conducted to investigate the use of µPMUs

for fault detection in DNs.
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A data-driven event classifier is developed to effectively classify power-quality events

in [52]. The investigations carried out in [53] with an abnormal event detection

framework are effective on an actual distribution network with µPMUs. Anomaly

Detection Using Optimally Placed Sensors in Distribution Grids is described in [54].

A study is carried out in [55] on the unexpected disruptive events interrupting the

normal operation of assets in distribution grids can eventually lead to permanent

failure with expensive replacement costs over time. The transient effect of fault on

the load level as well as the feeder level is examined in [56]. In [57], µPMU data is

used for fault detection, location identification, and faulty phase identification.

Overall, µPMUs have shown great potential in fault detection in DNs, and various

algorithms have been proposed for this task. The choice of the algorithm depends on

the specific requirements of the application and the characteristics of the DN. Further

research is needed to investigate the performance of these methods under different

operating conditions and to develop more advanced fault detection algorithms based

on µPMUs.

2.3.2 Fault Classification

A practical method that can accurately and quickly identify the type of fault occur-

ring in a distribution grid was developed and compared in [57]. An intelligent fault

classification scheme for distribution systems that utilize artificial neural networks

and fault current angles to accurately classify series, shunt, and simultaneous faults,

leading to improved distribution system security by detecting cable disruptions is

proposed in [58]. The technique proposed in [59] needs fault-on voltages of all the

nodes connected to the end of lines/branches in order to classify and locate differ-

ent types of faults. A study described in [60] analyzes machine learning techniques
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for fault classification in electrical distribution networks, utilizing data from PMUs

installed throughout the network and simulating various fault scenarios, resulting in

33 fault types. The above-mentioned studies contribute to the advancement of fault

type identification and classification techniques, offering opportunities for improv-

ing distribution system reliability and performance utilizing real-time scenarios or

events happening in the networks.

2.3.3 Fault Section Identification

A study conducted in [61] on the precision of fault location in power networks us-

ing phasor measurement units (PMUs) and the impedance matrix, highlighting the

method’s effectiveness in considering uncertainties and achieving optimal response

regardless of fault type or resistance, with an evaluation conducted on a 14 bus dis-

tribution network. in [62], a study demonstrates the suitability of PMU-based state

estimation processes in active distribution networks for fault detection and iden-

tification, utilizing parallel synchrophasor-based state estimators with augmented

topologies and a metric for solution selection, as validated through real-time simula-

tions of various fault types and network configurations. The proposed process scheme

proves effective for both active and passive networks, with different fault locations

and types. A fault location method for multi-source distribution networks using

phasor measurement units (PMUs) is described in [63]. The method utilizes voltage

and current information from PMUs to calculate candidate fault locations, distances

and then leverages voltage phase relationships to accurately determine the actual

fault location while eliminating false positives, demonstrating high position accuracy

in simulations even with high levels of distributed energy resource penetration and

high-resistance faults. A fault location identification method for smart distribution
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networks using a state estimation algorithm with real-time data from simulated pha-

sor measurement units (PMUs), achieving accurate fault location identification in

the presence of distributed generation and both balanced and unbalanced fault types

is presented in [64]. A novel fault location method for distribution systems is in-

troduced utilizing synchrophasor measurements obtained from phasor measurement

units (PMUs), enabling accurate fault identification within 1% accuracy of the line

length, regardless of network topology, fault type, or PMU placement [65].A fault

location method for distribution networks using phasor measurement units (PMUs)

and power system state estimation, where an optimization problem is formulated

to determine the faulty section and location based on PMU data and voltage dif-

ferences between grid lines, demonstrating simplicity, efficiency, and high accuracy

in fault location identification on a tested IEEE 123-node distribution feeder [66].

A novel technique is presented in [67] for fault location tracking in distribution

networks using Phasor Measurement Units (PMUs) and Iterative Support Detec-

tion, demonstrating its effectiveness in enhancing system reliability and continuity

of supply through accurate fault location identification in various network topologies

and conditions. In [68], a fault section location method using Convolutional Neural

Network based on data obtained from distribution level phasor measurement units,

provides accurate and robust fault section identification in medium and low voltage

distribution networks, overcoming the limitations of traditional methods in weak

fault feature scenarios. A machine learning-based fault location method is proposed

in [69], utilizing µPMUs in smart distribution networks, to accurately identify fault

sections regardless of fault characteristics and distributed generation (DG) perfor-

mance, with notable accuracy in fault section identification demonstrated through

simulations of various fault types on the 11-node IEEE standard feeder equipped

with three DGs. In [57], the method for location identification utilizes data from
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two µPMUs and relies on the compensation theorem, while fault detection and iden-

tification of the faulty phase are determined through analysis of magnitude shifts in

voltage and current phasors using discrete wavelet transform.

Several existing methods have been proposed for fault detection, classification and

localisation in distribution networks, including traditional methods based on voltage

and current measurements, and more advanced methods using machine learning al-

gorithms and intelligent systems. However, these methods have several limitations,

including low accuracy, high computational requirements, and the need for com-

plex hardware. A simple and easy-to-implement approach, with low computational

requirements, making it suitable for real-time applications is to be investigated to

meet the evolved challenges of today’s DN.

2.4 Research Gaps

Both traditional fault management approaches and machine learning-based methods

have limitations when it comes to effectively handling system changes and distur-

bances in power distribution networks. Traditional approaches often struggle to

adapt to the complexities introduced by the integration of distributed generation

(DG) systems and network topology modifications. They lack the necessary flexi-

bility and adaptability to accurately detect, classify, and identify faults under these

changing conditions.

On the other hand, machine learning-based approaches have shown promise in fault

management. However, they often rely heavily on historical data for training, which

may not capture the dynamic nature of distribution networks and the unique chal-

lenges introduced by system changes and disturbances. Moreover, these models can
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lack interpretability and explainability, which hinders their adoption in critical fault

management applications.

There is a research gap in the development of a comprehensive fault management

approach that overcomes the limitations of traditional and machine learning-based

methods and effectively handles system changes and disturbances. A rules-based In-

tegrated Fault Detection, Classification, and Section Identification (I-FDCSI) method

offers a potential solution to this gap. By leveraging expert knowledge and statisti-

cal analysis of realistic measurements, the rules-based approach can provide simple

and interpretable fault management decisions for DCC operators.

The rules-based I-FDCSI method utilizes high-resolution synchronized measure-

ments obtained from µPMUs to accurately detect, classify, and identify faults and

faulty sections within the distribution network. The method incorporates a set of

rules developed based on expert knowledge and statistical analysis, allowing it to

adapt to system changes and disturbances, such as DG integration and network

topology modifications.

Addressing this research gap by developing and validating a rules-based I-FDCSI

method would contribute to the advancement of fault management in power distribu-

tion networks. The method’s transparency, interpretability, and adaptability make

it a promising alternative to traditional and machine learning-based approaches. By

adopting a rules-based approach, distribution network operators can benefit from

reliable, explainable, and efficient fault detection, classification, and section identifi-

cation. The rules-based I-FDCSI method has the potential to significantly improve

service restoration time, enhance reliability, and optimize the operational efficiency

of distribution networks in the face of system changes and disturbances.
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2.5 Conclusion

The review highlighted the importance of modeling a DN and conducting load flow

studies to understand the behavior of the network under normal and fault conditions.

This step is crucial for establishing a baseline and providing the necessary data for

fault analysis. Several studies were reviewed that emphasized the significance of ac-

curate modeling and load flow validation to ensure the reliability of fault detection

and classification algorithms. Moreover, the literature review emphasized the need

for developing topology-focused rules-based algorithms for fault classification and

section identification in DN. These algorithms should consider the unique character-

istics of DN, such as the presence of radial feeders, complex network configurations,

and the integration of DGs. By focusing on network topology, these algorithms can

effectively identify faulted sections and classify the type of fault accurately.

The review also identified research gaps in the existing literature, including the

need for comprehensive validation of fault classification and section identification

algorithms under various system changes and disturbances. The integration of DGs

and network topology modifications can significantly impact the fault behaviour in

DN, and it is crucial to account for these factors during the algorithm development

and validation process.

In light of the research gaps and objectives, the proposed research aims to address

these challenges by developing an accurate and reliable IFDCSI method for fault clas-

sification and section identification in DN. This method will utilize topology-focused

rules-based algorithms that consider the effects of system changes and disturbances.

The validation of the developed method will involve extensive testing under different

scenarios, including the integration of DGs and network topology modifications.
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Overall, the findings from this literature review underscore the importance of ac-

curate modeling, load flow studies, and the development of topology-focused rules-

based algorithms for fault detection and classification in DN. The proposed research

will contribute to the advancement of fault analysis techniques in DN and provide

practical solutions for enhancing the reliability and operation of distribution systems

in the presence of DG integration and network topology modifications.



Chapter 3

Reliability of Power Distribution

Networks

3.1 Introduction

The reliability of power distribution networks is of paramount importance in ensur-

ing the seamless delivery of electricity to consumers. Power distribution networks

form the crucial link between the high-voltage transmission system and end-users,

encompassing a complex network of substations, transformers, distribution lines,

and customer connections. The reliable functioning of these networks is essential for

various sectors such as residential, commercial, industrial, and institutional, as well

as critical infrastructure facilities. Reliability in power distribution networks refers

to the ability of the system to provide an uninterrupted and high-quality electric-

ity supply to consumers, minimizing the frequency and duration of power outages.

Achieving and maintaining high levels of reliability requires a comprehensive under-

standing of the causes of failures, the implementation of appropriate improvement

34
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strategies, effective reliability evaluation and modeling techniques, and the adoption

of best practices. This chapter explores the various aspects related to the reliability

of power distribution networks, aiming to provide insights into enhancing network

performance and mitigating disruptions.

Power distribution network reliability is crucial for ensuring economic productiv-

ity, public safety, and the overall well-being of communities. The impact of power

outages can be significant, leading to financial losses for businesses, disruption of

essential services, and inconvenience for individuals. Various factors can contribute

to power distribution network failures, including equipment malfunctions, weather-

related events, human errors, cybersecurity threats, and overloading [70]. To improve

reliability, utilities and operators employ several strategies, such as system redun-

dancy, regular maintenance and inspection, fault detection and isolation techniques,

distribution automation and control systems, load management strategies, and the

integration of distributed generation and microgrids [71]. Additionally, reliability

evaluation and modeling play a vital role in understanding network performance,

identifying areas for improvement, and making informed decisions regarding net-

work planning and operation. By studying case studies, best practices, and future

trends and challenges, this chapter aims to provide a comprehensive understand-

ing of power distribution network reliability and the strategies employed to ensure

uninterrupted and high-quality electricity supply to consumers.

3.2 Key Reliability Metrices

Reliability metrics are essential tools for quantitatively assessing the performance

and quality of power distribution networks [71]. These metrics provide valuable

insights into the frequency and duration of power interruptions, enabling utilities
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and operators to measure and track the reliability of their systems [72]. The follow-

ing section discusses the key reliability metrics commonly used in evaluating power

distribution networks:

3.2.1 SAIFI (System Average Interruption Frequency Index)

SAIFI is a crucial reliability metric that represents the average number of interrup-

tions experienced by customers within a specific time frame [73]. It quantifies the

frequency of power outages and is calculated by dividing the total number of cus-

tomer interruptions by the total number of customers served during a given period.

SAIFI is typically expressed as interruptions per customer per year and provides an

indication of the overall reliability of the power distribution network.

3.2.2 SAIDI (System Average Interruption Duration Index)

SAIDI is another important reliability metric that measures the average duration of

interruptions per customer within a specific time frame [74]. It quantifies the dura-

tion of power outages and is calculated by dividing the total customer interruption

duration by the total number of customers served during a given period. SAIDI is

usually expressed in minutes or hours and provides insights into the average outage

duration experienced by customers, reflecting the reliability of the power distribution

network.
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3.2.3 CAIDI (Customer Average Interruption Duration In-

dex)

CAIDI is a reliability metric that represents the average duration of interruptions

experienced by a customer per interruption event. It is calculated by dividing the

total customer interruption duration by the total number of customer interruptions

during a given period. CAIDI provides insights into the average outage duration per

event and helps identify the effectiveness of restoration efforts and the responsiveness

of the power distribution network in resolving interruptions promptly [75].

3.2.4 Customer Minutes Lost (CML)

CML is a metric used to quantify the total duration of time that customers are

without power during an outage. It represents the cumulative sum of the minutes

of interruption experienced by each customer affected by the outage [76]. CML

provides valuable insights into the extent of customer inconvenience and disruption

caused by power outages. By tracking CML, utility companies can assess the overall

impact of outages on their customers and use this information to improve their

outage management strategies, prioritize infrastructure investments, and enhance

reliability to minimize customer minutes lost in the future. Additionally, CML is

often used as a key performance indicator (KPI) to monitor the effectiveness of power

distribution systems and evaluate the success of outage response and restoration

efforts.

These key reliability metrics play a crucial role in assessing the performance and

effectiveness of power distribution networks. By analyzing and monitoring these



Chapter III. Reliability of Power Distribution Networks 38

metrics, utilities and operators can identify areas of improvement, implement tar-

geted reliability enhancement strategies, and evaluate the impact of their efforts to

ensure uninterrupted and high-quality electricity supply to customers.

3.3 Causes of Power Distribution Network Failures

Power distribution network failures can occur due to various factors, and under-

standing their relative contributions is crucial for utilities and operators to priori-

tize mitigation efforts and allocate resources effectively [77]. The following section

explores the primary causes of power distribution network failures along with their

estimated percentage contributions:

Conductor failure is a significant contributor to power distribution network failures,

accounting for approximately 70% of the total incidents [78]. Ageing infrastructure,

inadequate maintenance, and manufacturing defects can lead to the malfunctioning

of critical components such as transformers, switchgear, circuit breakers, and cables.

Insulation degradation, thermal stresses, and electrical faults within the equipment

contribute to failures. To address this cause, utilities must prioritize equipment

maintenance, condition monitoring, and timely replacements to minimize the risk of

failures.

3.3.1 Weather-related Events

Severe weather conditions contribute to power distribution network failures and

service interruptions [79]. Storms, hurricanes, snowstorms, ice storms, and high

winds can cause physical damage to power lines, poles, and associated infrastructure.
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Falling trees, debris, and flooding further exacerbate the impact. Climate change-

induced extreme weather events pose an increasing risk to the network’s reliability.

Utilities need to strengthen infrastructure resilience, undertake proactive vegetation

management, and implement weather monitoring systems to mitigate the effects of

weather-related failures.

3.3.2 Human Errors

Construction errors, improper installation, inadequate training, and maintenance

mistakes contribute to system failures. Operational errors, such as misconfigurations

and incorrect adjustments during routine maintenance, testing, and troubleshooting,

can also lead to disruptions. Utilities should prioritize training programs, quality

control measures, and the use of standard operating procedures to minimize human-

related failures.

3.3.3 Cybersecurity Threats

In the digital era, cybersecurity threats are one of the major challenges that evolved

in the smart grid transformation of Distribution networks [80]. Hackers, malicious

actors, and cybercriminals target control systems, communication networks, and

data centres, aiming to disrupt operations or gain unauthorized access. Cybersecu-

rity breaches can compromise network integrity, cause service disruptions, and lead

to outages. Robust cybersecurity measures, including network monitoring, intru-

sion detection systems, strong access controls, and employee awareness training, are

essential to mitigate the risks associated with cyber threats.
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3.3.4 Overloading and Overvoltage

Overloading occurs when the demand for electricity exceeds the network’s capac-

ity, leading to strain on components and potential failures [81]. Overvoltage, on

the other hand, refers to voltage levels exceeding the specified range, which can

damage equipment and cause insulation breakdowns. Inadequate network planning,

increased electricity consumption, voltage fluctuations, and faults in neighbouring

transmission systems contribute to these conditions. Implementing effective load

management strategies, monitoring systems, and voltage regulation mechanisms is

necessary to mitigate overloading and overvoltage-related failures.

Understanding the percentage contributions of these causes helps utilities and oper-

ators prioritize their efforts to enhance power distribution network reliability. It may

vary from utility to utility based on different network and geographical conditions.

By allocating resources based on the relative significance of each cause, utilities can

implement targeted strategies, preventive maintenance programs, and infrastructure

upgrades to mitigate failures and ensure reliable electricity supply to consumers.

3.4 Reliability Improvement Strategies

Enhancing the reliability of power distribution networks is crucial for ensuring unin-

terrupted electricity supply to consumers. To achieve this, utilities and operators im-

plement various strategies and technologies to mitigate failures and improve network

performance [82]. The following section explores some key reliability improvement

strategies in distribution networks:

Investing in infrastructure upgrades and expansion is a fundamental approach to

improving network reliability. This includes replacing aging equipment, such as
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transformers, switchgear, and cables, with modern and more reliable counterparts

[83]. Upgrading to smart grid technologies enables better monitoring, control, and

automation of the distribution network, enhancing its resilience [84]. Additionally,

expanding the network capacity and redundancy through the installation of new sub-

stations, feeders, and distribution lines reduces the risk of overloading and improves

overall system reliability.

Implementing proactive maintenance practices and condition monitoring techniques

is crucial for identifying and addressing potential failures before they occur. Regular

inspections, testing, and preventive maintenance activities help detect and rectify

equipment issues, such as insulation degradation, loose connections, and abnor-

mal operating conditions. Advanced monitoring technologies, including sensors, re-

mote diagnostics, and predictive analytics, enable real-time monitoring of equipment

health, allowing for proactive maintenance interventions and minimizing the risk of

unexpected failures [85].

Rapid fault detection and isolation are critical for minimizing outage durations and

restoring power supply promptly. Implementing fault detection devices, such as

fault indicators and circuit breakers with fault detection capabilities, enables faster

identification of fault locations [86]. Automated fault isolation systems, such as

sectionalizers and auto-reclosers, can isolate faulty sections and restore power to

the unaffected areas, reducing the impact of faults on the entire network. Remote

monitoring and control systems enhance the efficiency of fault management processes

and enable faster response times [87].

Integrating distributed generation (DG) sources, such as renewable energy systems

and cogeneration units, into the distribution network can improve reliability and

resilience [88]. DG systems reduce dependency on centralized generation and trans-

mission infrastructure, enhancing the network’s ability to withstand disruptions [89].
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Microgrids, which operate as localized power systems with interconnected DG re-

sources, can operate independently or in parallel with the main grid during outages,

ensuring a reliable power supply to critical loads and reducing the overall impact of

network failures.

Maintaining optimal power quality is essential for ensuring the reliable and efficient

operation of electrical devices. Implementing power quality monitoring and man-

agement measures, such as voltage regulation, harmonic mitigation, and reactive

power compensation, helps mitigate issues such as voltage sags, surges, flickers, and

harmonics [90]. Enhanced power quality management reduces equipment stress,

improves operational efficiency, and minimizes the risk of equipment failures and

subsequent network disruptions.

Developing resilience plans and disaster preparedness strategies is crucial for miti-

gating the impact of natural disasters and extreme weather events [91]. This includes

implementing robust emergency response procedures, conducting risk assessments,

establishing backup power systems, and reinforcing critical infrastructure against

potential hazards. By identifying vulnerabilities and implementing appropriate re-

silience measures, utilities can minimize downtime, expedite restoration efforts, and

improve the overall reliability of the distribution network [92].

By implementing these reliability improvement strategies, utilities and operators can

enhance the performance, resilience, and reliability of power distribution networks.

The integration of advanced technologies, proactive maintenance practices, fault

management systems, and resilience planning enables utilities to deliver a more

robust and dependable electricity supply to consumers.
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3.5 Future Trends and Challenges

As power distribution networks continue to evolve, several future trends and chal-

lenges are expected to impact their reliability. Understanding these trends and

addressing associated challenges is crucial for utilities and operators to ensure the

continuous and reliable delivery of electricity. The following section explores some

of the prominent future trends and challenges in the reliability of power distribution

networks:

The increasing integration of renewable energy sources, such as solar and wind, into

distribution networks poses both opportunities and challenges for reliability [93].

While renewable energy can contribute to a cleaner and more sustainable energy

system, it’s intermittent nature and decentralized generation can introduce opera-

tional challenges. Utilities will need to develop effective strategies for managing the

variability and uncertainty associated with renewable energy sources to maintain

system stability and reliability [94]. Advanced forecasting techniques, energy stor-

age systems, and demand response programs will play critical roles in integrating

renewable energy while ensuring grid reliability.

The electrification of transportation, including electric vehicles (EVs), is expected to

significantly impact power distribution networks. The widespread adoption of EVs

and the increasing demand for electric charging infrastructure will place additional

stress on the distribution grid. Utilities must anticipate and address the increased

load demands, ensure sufficient capacity, and implement smart charging solutions

to mitigate potential overloads and voltage instability. Additionally, managing the

growth in electricity demand due to population growth, industrial expansion, and

technological advancements requires proactive planning and investments in grid in-

frastructure to maintain reliability [95].
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The digital transformation of power distribution networks, driven by advancements

in sensors, communication technologies, and data analytics, offers new opportunities

for improving reliability. The deployment of advanced monitoring and control sys-

tems enables real-time visibility into network operations, facilitating proactive fault

detection, rapid response, and predictive maintenance. However, the increasing

complexity of digital systems introduces cybersecurity risks and the need for robust

security measures. Ensuring the reliability and integrity of digital grid infrastructure

and protecting against cyber threats will be critical challenges to address [96].

Many power distribution networks around the world are facing aging infrastructure,

which can lead to increased failure rates and reduced reliability [97]. The challenge

lies in managing and upgrading the existing assets while optimizing investment costs.

Implementing effective asset management strategies that prioritize infrastructure

upgrades, condition-based maintenance, and life-cycle assessments can extend the

lifespan of equipment and enhance overall network reliability. Additionally, utilities

need to develop strategies for integrating new technologies and modernizing the

distribution infrastructure to improve reliability and performance.

With the growing frequency and intensity of extreme weather events due to climate

change, power distribution networks face increased vulnerability. Severe storms,

hurricanes, floods, and wildfires can cause widespread damage to infrastructure and

result in prolonged power outages [98]. Building resilience against these events re-

quires robust disaster preparedness plans, improved vegetation management, hard-

ened infrastructure, and enhanced monitoring systems. Integrating microgrids and

distributed energy resources can also enhance the ability to quickly restore power to

critical facilities and minimize the impact of weather-related disruptions.

Addressing these future trends and challenges requires a proactive and comprehen-

sive approach from utilities, policymakers, and stakeholders. Embracing innovative
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technologies, investing in grid modernization, promoting renewable energy integra-

tion, and implementing robust resilience strategies will be crucial for ensuring the

reliability and sustainability of power distribution networks in the future.

3.6 Conclusions

The reliability of power distribution networks is vital for ensuring uninterrupted

electricity supply. Key strategies for improving reliability include proactive main-

tenance, infrastructure upgrades, fault detection, and resilience planning. Various

factors contribute to network failures, including equipment malfunctions, weather

events, human errors, cybersecurity threats, and overloading/overvoltage conditions.

Future trends and challenges, such as the integration of renewable energy, electri-

fication of transportation, grid digitization, aging infrastructure, and resilience to

extreme weather events, require proactive planning and strategic investments. Col-

laboration between utilities, researchers, and technology providers is crucial for driv-

ing advancements in grid infrastructure and monitoring systems. Continued research

and development are needed to address emerging challenges and identify innovative

solutions. Ultimately, by prioritizing reliability improvement strategies and adapting

to changing circumstances, utilities can deliver a resilient and dependable electricity

supply to meet the needs of society.



Chapter 4

Fault Management Process in DN

4.1 Introduction

The fault management process in real-time begins with the detection of a fault event

by the CTs of the circuit breaker (CB) connected to feeder panels. Over-current,

earth faults, and sensitive earth faults in general can be classified based on the

capabilities of the bay control and protection unit. Until this point, the distribution

control center (DCC) operator can see the status of the feeder CB, the type of

fault, histogram data, and so on from the supervisory control and data acquisition

(SCADA) system. If the respective feeder network is completely automated and

the communication channels perform well during the occurrence of the fault, the

automated switch status and remote fault indicator status are also visible to the

operators.

Figure 4.1: A general classification of fault location technique in DN

46
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Figure 4.1 depicts the fault management process from the occurrence of a DN fault

to the restoration of service to the greatest number of customers possible. While

implementing the fully automated distribution feeder network, most utilities be-

come selective based on the priority loads connected, such as the ruler’s building,

emergency services, schools, festival centers, and so on. However, due to the high

installation and maintenance costs, the majority of DNs in many utilities remain

unautomated [99]. Most DNs around the world are less visible and observable than

DCCs [100]. This delays the identification of faulty network sections. FSI is re-

garded as the most important and difficult task in the fault management process.

After the fault section has been properly identified, it can be isolated manually or

by opening the automated switches from the DCC. The primary goal is to isolate

the faulty section of the DN from the healthy portion of the DN and then restore

service to the healthy networks. The isolated faulty section will be observed to check

and repair the faulty cable or conductor, and after ensuring the section’s complete

healthiness, it will be returned to service to keep the system running normally. FSI

is an important process, but each step of the fault management process, from detec-

tion to service restoration, plays an important and systematic role in contributing

to system reliability indices such as the system average interruption frequency in-

dex (SAIFI), the system average interruption duration index (SAIDI), and so on.

The reliability matrices [101] are used to evaluate the performance of fault location

isolation and service restoration techniques.

4.1.1 Fault Detection

The first step in restoring the power system is fault detection (FD). Components

connected to the network by damage and field operation crews who work on the

network 24 hours a day, seven days a week to ensure the continuity of service from
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the utility to the connected customers or their loads. Utilities use a variety of

protection devices to detect faults in DN, whether they are temporary or permanent.

Temporary Because the conductors are left exposed to nature, faults such as sensitive

earth faults are common in overhead lines (OHL). Any natural phenomenon, such

as extreme weather, will have a direct impact on the lines. Sensitive earth faults

are used to detect these types of faults. Relays are typically installed at substation

feeding panels. Most OHL feeders will have this type of relay, and when such a

fault occurs, the CB recloses at 145 ms [56] from the time it was tripped. If the

CB successfully closes and connects the circuit to the feeding substation, the fault is

identified as temporary. If the CB trips again, the fault is identified as permanent..

4.1.2 Fault Classification

Even though fault classification (FC) is not particularly useful information during

the FD process when compared to FSI in pure underground cables, it still provides

line patrolling crews with more insights or situational awareness while identifying the

exact locations of faults. in OHL, as well as a mix of OHL and UG DN. Traditional

utility grids, which are equipped with single-phase transformers to feed customer

loads, can use these classified faults to identify fault locations by gathering various

information, such as customer outage complaints, GPS locations of customers and

transformers, and so on. Modern DN, on the other hand, is outfitted with three-

phase transformers. As a result, detected and classified faults play fewer roles in

FSI, particularly in urban or underground DN, but are useful in locating faults in

OHL and Mixed DN.
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4.1.3 Fault Section Identification

Fault section identification (FSI) is the identification of the exact faulted section of

the DN. In most cases, this will be the UG cables or OHL, as they have a higher

risk of failure due to factors such as differently aged conductors or cables, more

joints with a mix of old and new cables, different insulation types in cables joined

together, vegetation growth near the OHL, extreme weather conditions, and so on.

When compared to transmission lines, the equipment or other components connected

to the real DN, such as ring main units (RMUs), distribution transformers (DTs),

and low-voltage distribution boards (LVDBs), are less likely to fail. In practice,

cable termination failures such as termination flashovers can cause RMUs to fail,

but this is extremely rare. In this case, the faulty section will be the combination

of cables and RMU. Identifying the fault sections is the most difficult and time-

consuming task for DCC operators and field crews during the fault management

process. Traditional DNs have fault indicators (FI) installed at almost all nodes,

but remote fault indicators (RFI) are only installed at a few nodes due to the large

investment requirements. The logic behind FSI is to precisely identify the faulty

section, isolate it from the healthy portion of the DN, and restore service to as many

customers as possible. Even though utilities are implementing advanced monitoring

devices, communication technologies, and distribution automation projects such as

RFIs, automated switches, and RF mesh communication technologies, it is still lim-

ited to a small number of assets or priority/critical loads [102]. The reason is simple:

high investment and maintenance costs, aging assets, and feasibility issues. with the

integration of variously aged assets and their integration limitations with cutting-

edge communication technologies. To avoid additional investment costs, the utility

employs a diverse mix of assets and communication technologies. Although various

technologies and devices are installed to speed up the FSI process, malfunctions
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and failures of such devices (fault indicators, other monitoring devices, automated

switches, etc.) make the fault management process more critical and challenging,

as incorrect identification of faulted sections leads to the recreation of fault events

while energizing the wrong healthy portions [103]. This even damages the various

power system components and poses potential safety issues for operational crews

and customers. This could have an impact on the utilities’ image. In order to avoid

these consequences, the failures or malfunctions of these fault monitoring devices

must be addressed.

4.1.4 Fault Section Isolation

Following the occurrence of any permanent fault in the DN, the line cannot be en-

ergized without isolating the faulty section, as this results in an energizing towards

a fault and re-enactment of the fault event. This could put the men and machin-

ery involved in danger. As a result, section isolation is critical. This is normally

accomplished by activating the manual or automated switches at both ends of the

respective cable section [104].

4.1.5 Service Restoration

This is the last step in the fault management procedure. When the isolation is

complete, it means that the rest of the network, or the healthy proportions of the

network, are safe to re-energize and restore the service to a healthy state. portions.

The reliability indices, primarily SAIDI and SAIFI, are determined by how quickly

and frequently customers’ service interruptions are restored [105].
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4.2 Challenges in Fault Management Process and

Need for µPMU in DN

When the various stages of the fault management process in real distribution systems

are compared, the FD is the simplest because all DN are equipped with relays.

and well-coordinated security systems. The FSI stage is the most difficult in the

fault management process because the identification time is solely determined by

the number of faults in current monitoring devices such as fault indicators (FIs),

remote fault indicators (RFIs), and switches or automated switches at both ends of

the sections. According to the author’s experience, these fault current monitoring

devices, both with and without the capability of communicating their status to

SCADA, fail or malfunction during the FD process. This complicates the fault

management process even further. In some cases, automated switches lose control

of the SCADA or fail to carry out the SCADA’s open or close commands. These

failures can occur for a variety of reasons, including hardware or software failure. and

communication outages, and a field crew is required to physically visit the stations

to manually operate the switches. The FSI has a limited number of monitoring

Devices in general, and their failures and malfunctions are the main challenges of

real DN [106]. Synchrophasors are measurements of voltage, current magnitude,

and phase angle that are synchronized [107]. Using synchronized measurements of

these parameters, grid operators can see the state of the grid. When compared to

traditional sensor measurements, such as SCADA, they provide greater precision

and accuracy, better temporal resolution, and cross-location synchronization. As

operators and planners, we must manage the increasing penetrations of variable

generation and controllable energy resources, and this data is becoming increasingly

important. As a result, while applying synchrophasor technology to the distribution
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tier is appealing, sensing in distribution systems is more difficult than transmission

because the signals of interest are smaller and the number of nodes is larger. higher

[108]. A micro-PMU is a type of phasor measuring unit designed specifically for

use in distribution circuits (or PMU). When in PMU mode, the device reports a

phasor (magnitude and angle) defining each waveform with two samples per cycle,

or 120 samples per second. GPS time is used to synchronize phasor measurements

across locations. [109] stamping. The PMU time-stamping has nanosecond and

microsecond precision thanks to GPS. As a result, the PMU network can measure

phase variations on the order of hundredths of a degree, which are common in

distribution circuits but too small to be monitored by transmission PMUs [110].

The angle discrepancies and variations in distribution require a higher degree of

accuracy than in transmission due to the different X/R ratios [110]. Micro-PMUs

improve distribution system monitoring, analysis, and control, allowing utilities to

improve grid performance, optimize operations, and increase reliability [111]. They

offer useful information for distribution planning, system optimization, and decision-

making. As a result, distribution operations become more efficient and resilient.

Aside from current and voltage magnitude, phase angle provides information on

power flow direction. for topology research. In terms of calculating loads on a per-

phase basis, line-level measurement outperforms smart metering. Despite the fact

that PMUs have a variety of parameter monitoring capabilities, investigations of

short circuit faults are best observed in current values and a few voltage variations.

4.3 Conclusions

The Fault Management Process is critical for ensuring the reliability of power distri-

bution networks. It entails detecting and locating faults, then taking the necessary
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actions to resolve them. To improve the process, technologies such as fault predic-

tion and self-healing systems are being developed. Communication and coordination

among stakeholders must be effective. A solid fault management process increases

network reliability, decreases downtime, and ensures a consistent power supply. On-

going research and advancements in network monitoring technologies such as PMUs

will improve the reliability and resilience of power distribution networks.



Chapter 5

Distribution Network Modelling,

Load flow Simulations and Validation

5.1 Introduction

Distribution test feeder modelling, load flow simulation, and results validation are

important steps to undertake before starting a fault detection, classification, and

section identification research for the following reasons:

Accurate Representation: Distribution test feeder modelling provides a mathemat-

ical representation of the distribution network, capturing its components and their

interconnections. This ensures that the research is based on a realistic and accurate

model, reflecting the actual electrical characteristics and topology of the distribution

system. It enables researchers to work with a standardized and validated platform,

enhancing the credibility and reliability of the research outcomes.

54
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Understanding System Behavior: Load flow simulation allows researchers to study

the steady-state operating conditions of the distribution network. It provides valu-

able insights into voltage profiles, power flows, and losses under various operating

scenarios. By understanding the normal behavior of the system, researchers can de-

velop a baseline understanding of how faults may affect these parameters and how

they propagate through the network. This knowledge is crucial for fault detection,

classification, and section identification algorithms.

Performance Evaluation: Load flow simulation helps in evaluating the performance

of the distribution network. It provides information on voltage regulation, power

losses, and system stability. Researchers can use this information to establish per-

formance criteria for fault detection, classification, and section identification algo-

rithms. By setting appropriate thresholds and benchmarks based on the simulated

results, researchers can assess the effectiveness and accuracy of their proposed meth-

ods.

Validation of Results: Results validation is an essential step to ensure the reliabil-

ity and accuracy of the research findings. By comparing the simulated results with

measured data or validated models, researchers can verify the performance of their

fault detection, classification, and section identification algorithms. Validation al-

lows them to assess the level of agreement between the simulated and actual system

behavior and identify any discrepancies or limitations in their proposed methods. It

enhances the confidence in the research outcomes and provides a basis for further

improvements and enhancements.

Real-World Application: Distribution test feeder modelling, load flow simulation,

and results validation enable researchers to develop fault detection, classification,

and section identification algorithms that can be effectively applied to real-world

distribution systems. By starting with a well-modeled and validated test feeder,
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researchers can ensure the applicability and scalability of their research outcomes

to actual distribution networks. This helps in developing practical and effective

solutions that can be implemented in real-world scenarios, leading to improved fault

management and system reliability.

In summary, undertaking distribution test feeder modelling, load flow simulation,

and results validation before starting a fault detection, classification, and section

identification research is crucial. These steps provide researchers with an accu-

rate representation of the distribution system, a comprehensive understanding of its

behavior, performance evaluation metrics, and a validation framework for their pro-

posed algorithms. This ensures that the research is grounded in realistic conditions

and enhances its credibility, applicability, and effectiveness in real-world distribution

systems.

5.2 Methodology

To achieve the objectives of distribution test feeder modelling, load flow simulation,

and results validation, the following methodology is typically employed:

Data Collection: Gather detailed information about the distribution network, includ-

ing the physical parameters of its components such as distribution lines, transform-

ers, voltage regulators, distributed generation units, and loads. This data includes

resistances, reactances, ratings, and connectivity information.

Distribution Test Feeder Modelling: Develop a mathematical representation of the

distribution network based on the collected data. Utilize modeling techniques to
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accurately capture the electrical characteristics and interconnections of the compo-

nents. Ensure that the model reflects the topology, ratings, and operational con-

straints of the actual distribution system [112].

Load Flow Simulation: Utilize load flow analysis techniques to solve the power flow

equations and determine the steady-state operating conditions of the distribution

network. Select an appropriate numerical method, such as the Newton-Raphson

method, Gauss-Seidel method, or Fast Decoupled method, to iteratively solve the

nonlinear algebraic equations. Consider factors such as power injections, reactive

power control, line losses, and voltage regulation mechanisms in the simulation.

Results Validation: Compare the load flow simulation results with measured data

from the distribution network or with validated models. Use key performance metrics

such as voltage profiles, power flows, and losses for the comparison. Apply statistical

analysis techniques, such as root mean square error or percentage error, to quantify

the differences between the simulated and measured values. Assess the level of

accuracy and reliability achieved by the simulation.

Model and Methodology Improvements: Identify any discrepancies or limitations

in the simulation results and the validation process. Make necessary adjustments

or improvements to the distribution test feeder model and load flow simulation

methodology. Incorporate feedback from the validation process to enhance the ac-

curacy and reliability of the analysis. This iterative process helps in refining the

model and methodology for better results.

Research Application: Apply the validated model and load flow simulation method-

ology as a foundation for fault detection, classification, and section identification

research. Utilize the understanding of the system behavior, performance evaluation

metrics, and the validation framework to develop and test the proposed algorithms.
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Assess the effectiveness and accuracy of the algorithms in detecting and classifying

faults and identifying faulted sections.

Continuous Validation and Improvement: Continuously validate the results of the

fault detection, classification, and section identification research against measured

data or validated models. Incorporate feedback and adjust the algorithms as nec-

essary to improve their performance. This iterative process ensures the continuous

enhancement of the methodology and its applicability to real-world distribution sys-

tems.

By following this methodology, engineers and researchers can achieve accurate dis-

tribution test feeder modelling, reliable load flow simulation, and robust results

validation. This provides a solid foundation for research and analysis in fault detec-

tion, classification, and section identification, leading to improved fault management

and system reliability in distribution networks.

5.3 Distribution Network Selection and Modeling

The IEEE 34-node test feeder qualified as the best candidate for the analysis among

the available benchmark test feeders. This feeder is a genuine DN located in Arizona.

The feeder’s system voltage is 24.9 kV. The feeder is notable for its length and

light load, as well as the requirement for two in-line regulators to maintain the

specified voltage limits and other factors. The DN is unbalanced by nature, with

both "spot" and "distributed" loads and shunt capacitors; an in-line transformer

reduces the voltage for a shorter portion of the feeder to 4.16 kV. [113]. The length

of the feeder and the unbalanced loading could aid in generating realistic dynamics

on the DN and visualizing them using PMUs’ high-resolution data-measurement

capability. DP is used to create real-time events and scenarios for the test feeder.
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Using the feeder component data from [112] and reference data from [147], the

IEEE 34 node is perfectly modeled. The DP has a large component library and

features that allowed to model the network without making any assumptions about

how the components were connected. The DP allows for the modeling of three-

phase, four-wire systems, which is critical for modeling the unbalanced three-phase

DN[113]. The nodes are used to place the spot loads, and the distributed loads are

connected in the middle of the line. The network’s line sections are labeled as shown

in Appendix A’s Table A1. The feeder is modeled without a substation transformer

because the published load flow results do not take it into account when generating

load flow results. However, for this study, an external grid connection with 1.05 p.u.

as the reference phase-to-phase voltage for the base node 800 is chosen. The voltage

regulator (VR) tap positions for regulators 1 and 2 remain as 12-05-05 (A-B-C)

and 13-11-12 (A-B-C), respectively. Figure 5.1 depicts the DP model of the test

feeder. The components with red dotted lines represent the phase A-N connection;

the components with yellow dotted lines represent the phase B-N connection; the

components with blue dotted lines represent the phase C-N connection; and the

components with black dotted lines represent the phase ABC-N connection. The

DGs modelled are highlighted in grey colour.

5.4 Load Flow Simulations and Validations

The load flow algorithms are used to determine the line flows and voltages for a

significant power system based on the provided load and generation data. It is a

critical and fundamental tool for power system analysis, and it is used both during

the operational and planning phases. Single-phase power Flow methods are com-

monly used in systems where unbalances can be ignored. However, the three-phase



Chapter V. DN Modelling, Simulation and Load flow Validations 60

SG
~

SG
~

S
G ~

SG
~

S
G ~

SG
~

SG
~

DG840 

D
G

_T
R

_8
40

 

DG862 

DG_TR_862 

D
G

84
8 

DG_TR_848 

DG890 

D
G

_T
R

_8
90

 

D
G

85
2 

DG_TR_852 

DG850 
D

G
_T

R
_8

50
 

D
G

_T
R

_8
02

 

E
xt

er
na

l G
rid

 

DG802 

c

ZJ

DL 816-824 

v

D
L 

84
6-

84
8 

t

D
L 

84
4-

84
6 

r

D
L 

84
2-

84
4 

y

D
L 

86
2-

83
8 

a

DL 836-840 

Y

DL 860-836 

W

DL 834-860 

U

DL 858-834 

l

DL 854-856 

N

DL 828-830 

S

D
L 

83
2-

85
8 

o

D
L 

85
8-

86
4 

L

D
L 

82
4-

82
8 

j

DL 824-826 

h

D
L 

82
0-

82
2 

f

D
L 

81
8-

82
0 

D
L 

80
8-

81
0 

C

DL 802-806 

SL 830 

SL 890 

S
L 

84
8 

S
L 

84
4 

SL 840 
SL 860 

V
R

2 

x
w

XV

u
s

q
p

T

n
R

m
XF10 

Q
P

kOM

K

iI

g
e

d

HG
VR1 

FE

b

DBA 812806 RG10

844

850814808

888 890

860816

854

820

856

838

862

824 826

848

846

842

802 836

864

832

828

RG11

852

830

818

834858

822

810

840800

 PowerFactory 2019 SP1 

 IEEE 34 NODE TEST FEEDER-Detailed Model

 (Modelling, Simulation & UB Load Flow Validation)
 ABDUL HALEEM M I-PhD Scholar,UPES Dehradun,India

 abdulhaleem.powerresearcher@ieee.org

 Project: PhD_AHMI  

 Graphic: Final_Model

 Date:    18/05/2019 

 Annex:    LFA & V 

Figure 5.1: IEEE 34 feeder modelled in DIgSILENT PowerFactory.

balanced hypothesis does not apply to distribution systems. A three-phase load flow

algorithm with full three-phase models is required in these cases. Furthermore, it is

critical to resolve the load. flow problem as soon as possible because several applica-

tions, particularly distribution automation and optimization, require their solution

on a regular basis [114-115]. A number of load flow algorithms designed specifically

for DN have been proposed in the literature. These compositions are divided into

two categories. In the first category [116-117], bus voltages were used as state vari-

ables to solve the load flow problem. This classification was based on a DN’s overall

topology. The most well-known load flow mechanism in this area is the Gauss im-

plicit Z-Bus approach [118-119]. This technology, which has been adopted by many

power companies, has been used in a variety of applications. The Newton-Raphson

(NR) algorithm was proposed in [120] to accelerate three-phase load flow by using
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rectangular-form voltages as state variables. Branch voltages are used as state vari-

ables in [121] to solve the load flow problem using an innovative quick three-phase

load flow method for unbalanced radial distribution systems that employs the NR

algorithm. Because it best fits the nature and behavior of the network model, the

load flow calculation method chosen in DP is an unbalanced, 3-phase (ABC) NR

(current equations). Figures B.1 and B.2 of Appendix B show the load flow simu-

lation settings used in the DP. The load flow simulation results are very similar to

those published by the IEEE. PES DSAC [113]. The DP model with node voltages

and line sections produces the load flow. Appendix A contains currents and their

angles (Tables A2 and A3, respectively). Tables 5.1 and 5.2 display the percentage

errors in node voltage and angle after comparing them to published load flow values.

The current lines are listed in Tables 5.3 and 5.4. Errors in magnitude and angle

percentage. Table 5.5 displays the results of three iterations of the DP model load

flow.

Table 5.1: Line-to-neutral voltage error deviation from the IEEE published re-
sults.

Table 5.2: Line-to-neutral angle error deviation from the IEEE published results.

The comparison of the load flow analysis results shows that the results exactly match

the results provided by the IEEE DSAC report, with very minimal errors.
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Table 5.3: Line current error deviation from the IEEE published results

Table 5.4: Line current angle error deviation from the IEEE published results.

Table 5.5: Load flow results from DP model vs. IEEE published results (in
brackets).

5.5 Conclusion

In summary, distribution test feeder modelling, load flow simulation, and results

validation are crucial technical components in power system analysis for distribution

networks. The accurate representation of the distribution system through meticulous

modelling enables researchers to gain a detailed understanding of system behavior

and characteristics. By employing load flow simulation techniques, researchers can

evaluate the system’s steady-state operation and assess performance metrics such as

voltage regulation, power flows, and losses.

Results validation is an integral part of the process, ensuring the reliability and

accuracy of the analysis. By comparing the simulated results with measured data
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or validated models, researchers can verify the performance of their proposed algo-

rithms and methodologies. Key performance metrics, such as voltage profiles and

power flows, are compared using statistical analysis techniques, providing insights

into the level of agreement between simulated and actual system behaviour.

By following a systematic methodology that includes data collection, modelling, load

flow simulation, and results validation, researchers can establish a robust foundation

for fault detection, classification, and section identification research. This method-

ology allows for an accurate representation of the distribution system, evaluation

of its performance, and development of effective algorithms. The application of

this methodology contributes to enhancing the reliability, efficiency, and stability of

distribution networks.

Ultimately, the combination of distribution test feeder modelling, load flow simula-

tion, and results validation facilitates advancements in fault detection, classification,

and section identification research. The technical rigour and validity of these pro-

cesses enable researchers to develop practical and applicable solutions that can be

implemented in real-world distribution systems, leading to improved fault manage-

ment, enhanced power quality, and increased system reliability.



Chapter 6

µPMU-based Realistic Data

Generation

6.1 Introduction

Monitoring, protection, and control procedures become increasingly complicated

as distributed energy resources (DERs) enter distribution networks (DNs). This

is true due to the structure of power DNs and the two-way flow of current from

different sources to loads. In order to increase the system’s situational awareness, it

is crucial to closely monitor the grid dynamics of the entire DER integration process

using synchronized high-resolution real-time measurement data from physical sensors

installed in the DN. µPMUs have been incorporated into the DN in order to help with

this. µPMUs can measure frequency and the rate at which frequency changes, as

well as voltage, current, and their phasors, in contrast to conventional measurement

devices (ROCOF). This study suggests a technique for producing accurate event

64
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data for a real utility Service by strategically placing µPMUs. To produce real-

time event-based realistic µPMU data for various situational awareness applications

in an imbalanced DN, an IEEE 34 test feeder with 12 µPMUs deployed in key

places is used. Using node voltages and line currents, the various no-fault and

fault events were examined. In order to conduct numerous situational awareness

and fault location studies in a real, unbalanced DN, the author generated this data

using his real-time utility grid operation experience. The DN was modeled using

the DIgSILENT PowerFactory (DP) program. For a variety of event detection,

classification, and section identification research projects, data-driven algorithms

can be developed using the realistic µPMU data that was obtained.

A rules-based integrated fault detection, classification, and section identification

(I-FDCSI) system for actual distribution networks (DN) using micro-phasor mea-

surement units (µPMUs) is created in the second part of the research. By lever-

aging high-resolution synchronized realistic measurements from strategically placed

µPMUs, the proposed technique detects and categorizes various fault types and

locates the defective portion of the distribution network. The I-FDCSI approach

is founded on a set of guidelines created through expert knowledge and statistical

analysis of measurements collected from realistic scenarios. The algorithms largely

employ line currents per phase reported by the several µPMUs to determine the

minimum and maximum short circuit current ratios. The algorithms were then im-

proved by simulating all potential classes and types of faults at all potential network

segments with various fault parameter values. By using the high-precision measure-

ments offered by µPMUs to find, categorize, and sectionalize defects, the suggested

I-FDCSI technique gets over DN’s fundamental challenges. The new IFDCSI ap-

proach is further tested and validated on a genuine distribution network with all

feasible real-time events, and its effectiveness is contrasted with that of traditional
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fault detection, classification, and section identification methods to ensure its appli-

cability. The results demonstrate that the I-FDCSI approach is more precise and

responds more quickly than traditional methods, enabling quicker service restoration

and raising the DN’s reliability and resilience indices.

6.2 Methodology

Based on the author’s real-time DN operation experience and the data’s availability

to model the network in the modeling and analysis tool, the realistic data-generation

approach considers the possibility of producing all of the realistic events anticipated

by the author. The key issue that arose throughout the methodology’s development

was how to maintain the data more realistic in nature while incorporating real-time

events. But by choosing the most appropriate network from dependable sources

and using a capable network modeling and analysis tool, the issue was resolved.

The rigorous seven-step methodology used in this study to analyze the behavior

of a real-world DN. The choice and modeling of the real DN came first. After

performing a load flow analysis on the network, the outcomes were checked against

previously released findings to assure accuracy. The network’s µPMUs and DGs

were then carefully positioned to enable accurate system behavior monitoring. The

definition and configuration of real-time events followed, with specific attention paid

to making sure that the event kinds and characteristics were indicative of real-world

conditions. The data-generation settings were also established in order to produce

precise and representative data. The numerous real-time occurrences were then

simulated after which the outcomes were plotted for study. To assure the correctness

and dependability of the findings, the data was checked in the end.
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6.2.1 µPMU Placement

Because of their communication limitations and high cost, traditional µPMUs used in

transmission networks are not ideal for radial DN. The introduction of µPMUs with

high reporting rates is appropriate for DN and may provide real-time synchropha-

sor data such as frequency, ROCOF, and voltage phasors. Furthermore, optimal

µPMU deployment at smart radial DN buses reduces the financial burden. When

placing the µPMUs in the modeled IEEE 34 DP model, only one main condition

is taken into account. The condition is to achieve total deployment cost minimiza-

tion while maintaining full system observability, so that the generated events can

be observed by at least one of the µPMUs in order for the event to be situationally

aware. Various optimization techniques, as well as a complete system observability

redundancy index (CSORI) and cost index, are used to determine the best solutions

(CI). The highest CSORI value ensures maximum system redundancy. The total

cost of optimal µPMU deployment is determined by CI [122].

A graph-theoretic approach was used in [123] to identify the critical buses where

µPMUs should be installed for effective monitoring. [124] proposes a hybrid ap-

proach based on a global search algorithm to determine the optimal subset of buses

for µPMU placement.

[125] proposes a heuristic algorithm based on the k-means clustering technique for

determining the optimal placement of µPMUs. Table 6.1 shows that the test feeder

can have 12 optimal locations for cost-effective installations while maintaining full

system observability. Because node 850 is a DG connection node, and the down-

stream node with lateral tappings can be observed, the one with node 850 is con-

sidered instead of node 814; additionally, the regulator (RG10) output parameters

must be monitored rather than the regulator input parameters to set the desired
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tap positions if the DGs are not integrated. The locations of µPMUs are chosen

through a simulation study in which the node voltages and line currents reported

by these µPMUs can be used to observe the planned realistic events. The DP does

Table 6.1: Investigations on optimal µPMU placements in IEEE 34 node feeder.

not have a µPMU component in the toolbox, but the µPMU’s features, such as the

magnitude of the voltage, current, and their angles, frequency, and so on, can be

generated as output while generating the output data of the nodes and line sections.

This data-generation study concentrated on the magnitude of µPMU node voltages,

line currents, and angles. These parameters will be collected from the 12 optimally

placed µPMUs in the feeder, as shown in Figure 6.1. Eleven of the twelve µPMUs

are three-phase, while one is single-phase.

6.2.2 Sizing and Placement of DGs

There are many different types of DGs, ranging from conventional to renewable;

however, this study is not specific to any one type of DG source. The main goal of

this effort is to integrate DGs at various locations in order to recognize and record
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Figure 6.1: Optimal µPMU locations in the test feeder.

their influence during various real-time occurrences using µPMU data. Each DG

was modeled as a synchronous generator. The power levels used for a DG intended

to supply 20% of the test feeder load, as well as the DG modeling parameters shown

in table 6.2, were obtained from [126]. The parameters that were not listed were set

to the DP defaults. A 500 kVA transformer in a delta-delta configuration was used

Table 6.2: DG modeling parameters.

to connect the DGs to the nodes. The modeling parameters for these transformers

were based on the 500 kVA line transformer used in the chosen feeder. Because

only three-phase DGs were used, DGs were installed only on three-phase nodes and

three-phase radial tappings, or laterals. With the exception of the substation and
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the voltage regulators, radial tapping from 832 is the only area of the circuit that

operates at 4.16 kV. It also houses the circuit’s line transformer. The only capacitors

in the circuit are located at 844 and 848 on the radial tapping from 834. There were

numerous DG locations that were feasible. The modifications were tried on the

radial tapping points as well as the main feeder, near and far from the substation,

and near the voltage regulators. Connection nodes 802, 840, 848, 850, 852, 862, and

890 were specifically evaluated. Each DG was built with a default size of 20% of the

original feeder load, resulting in a 410 kVA unit with a 350 kW planned real-power

output. The study focuses on the use of DGs at various feeder locations to generate

data for various real-time occurrences and their classes.

6.2.3 µPMU-Based Real-Time Event Data Generation

At a sampling rate of 120 Hz (or one sample every 0.008333 s), the optimally placed

µPMUs record four fundamental measurements on three phases, for a total of 12

measurement channels: voltage magnitude, current magnitude, voltage phase angle,

and current phase angle. This paper generates 30 minutes of µPMU data in the real

rural overhead DN, taking into account planned and unplanned outage events. The

author defines 109 real-time events based on his real-world grid operation experience.

This includes 62 planned and 47 unplanned network events. In 30 minutes, the 12

µPMUs collect and report 16,848,000 data points.

6.2.3.1 Realistic Real-Time Events

Because it is inherent in nature and has many complexities to address, the un-

balanced overhead DN has a high number of real-time events. The goal of using

an unbalanced overhead DN is to incorporate all of the relevant real-time network
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events. The events range from the planned to the unexpected. Even though most

events can fall into both categories, events caused by the activation of protection

devices are considered unplanned, while all scheduled events are considered planned.

To keep the events as realistic as possible, almost all event types are included, cov-

ering various components and locations in the test feeder. The test feeder model

generated 109 realistic events, which are listed in Table A.4–A.6 of Appendix A.

Capacitor bank switching, circuit breaker (CB) switching, CB trip, DG switching,

DG trip, line de-energization, line energization, load switching, load trip, overhead

line (OHL) jumper events, fault events, temporary faults, tap-changer events, trans-

former outage and energization, transformer trip, fault-clearing events, and customer

low-voltage complaints are among the events.

6.2.3.2 Data-Generation Settings in DP

The chosen test feeder is flawlessly modeled in DP and is absolutely necessary for the

data generated. The events are defined in relation to the DN model elements that

have been selected. Specific components are used to classify events as switching,

fault, or fault-clearing. The features include a variety of execution time options in

hour, minute, and second formats, as well as the ability to change the phase type

individually. Furthermore, they permit the use of various fault classes, impedance

levels, and the percentage of fault location distance in the line section. The data-

generation settings must be chosen with extreme care if the generated data resolution

is to match that of the actual data supplied by the µPMU. The RMS simulation

is run with all of the simulation occurrences using the DP settings listed below.

The default initial condition settings for the unbalanced three-phase ABC system

are RMS values (electrical and mechanical transients) with a step size of 0.008333.

(120 measurements per second). All other simulation settings are set to the default
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values. Figures B.3–B.6 of Appendix B show the main simulation settings used in

the DP for data generation.

6.2.3.3 Event Simulations and Plots

109 intended events are simulated by selecting the relevant component in the model

and providing the type of event, execution time, selected element action, phases

impacted, percentage of line section fault location, fault type, impedance, and other

parameters. If any changes to the simulation settings are needed, the list of simula-

tion events can be modified further.

Because twelve µPMUs have already been installed at the optimal nodes, the focus

of this study is solely on measuring them. Despite the fact that µPMU devices

can monitor a wide range of properties, the study only considers the node voltage

(line-to-neutral) and line currents. The data-production criteria were created with

the intention of using these data for future work on event detection, categorization,

and section identification. The phase-to-neutral voltage is measured due to the

unbalanced loading on the test feeder, which includes a number of single-phase to

neutral and two-phase to neutral loads. Each µPMU generates two fundamental

graphs: phase current vs. time and node voltage (phase to neutral) vs. time.

6.2.4 Results

The plots shown here for each event represent the µPMUs in the network that have

been most impacted by that event. The plots are in per-unit values of the line-

to-neutral voltage and line currents of the relevant µPMUs over time in seconds.

The results show that when the capacitor bank is turned on, the voltage magnitude

increases to compensate for the reactive power and decreases when it is turned off.
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The line currents reported by the µPMUs upstream (US) and downstream (DS) are

affected by the initial switching conditions. Line current undershoots and overshoots

are observed during both capacitor switch-on and switch-off events.

Line voltages drop to zero during main CB tripping events, while line currents drop

to zero following a switching spike, depending on the cause of the tripping. In the

event of a failure, the voltage on the affected line or lines will drop to zero, while the

current will rise to the fault level and remain there until the circuit breaker trips.

When the CB closes, the voltage rises from zero to the nominal network voltage, and

the current surges to the maximum current before settling back to the normal load

current value after a few seconds. The results of DG switch-on events show a drop in

line voltages and a rise in line currents, but both values return to normal after a few

seconds, whereas the DG switch-on event indicates a voltage and current increase in

the nearest µPMU and a voltage and current drop in the farthest µPMU. Similarly,

all of the key real-time events observed in an unbalanced DN selected for this study,

as well as their impact on node voltages and line currents from the relevant µPMUs,

are listed in Table 6.3.

The realistic data generated for a variety of real-world grid events demonstrate

their applicability in a wide range of use cases, including real-time µPMU data-

based predictive maintenance of critical assets (transformers, OHLs, CBs, DGs,

etc.). µPMU dynamics assist with real-time asset health monitoring and aging

analysis. Aside from these applications, the data can be used for offline analytics

for network planning, scheduled maintenance, topology changes, and so on.
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Figure 6.2: Capacitor bank switch-off event (µPMU7).

Figure 6.3: Capacitor bank switch-off event (µPMU11).
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Table 6.3: Event category chart and their plots.

Figure 6.4: Capacitor bank switch-on event (µPMU7).
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Figure 6.5: Capacitor bank switch-on event (µPMU11).

Figure 6.6: CB trip event (µPMU1).
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Figure 6.7: CB trip event (µPMU2).

Figure 6.8: CB close event (µPMU1).
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Figure 6.9: CB close event (µPMU2).

Figure 6.10: DG switch-on event (µPMU11).
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Figure 6.11: DG switch-on event (µPMU1).

Figure 6.12: DG switch-off event (µPMU11).
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Figure 6.13: DG switch-off event (µPMU1).

Figure 6.14: DG trip event (µPMU5).
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Figure 6.15: DG trip event (µPMU6).

Figure 6.16: Line section de-energization (µPMU1).
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Figure 6.17: Line section de-energization (µPMU2).

Figure 6.18: Line section energization(µPMU1).
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Figure 6.19: Line section energization (µPMU2).

Figure 6.20: ABCN load switch-off event (µPMU7).
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Figure 6.21: ABCN load switch-off event (µPMU11).

Figure 6.22: ABCN load switch-on event (µPMU7).
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Figure 6.23: ABCN load switch-on event (µPMU11).

Figure 6.24: BCN load trip event (µPMU1).
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Figure 6.25: BCN load Trip Event (µPMU2).

Figure 6.26: B-N jumper parted open circuit fault (µPMU1).
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Figure 6.27: B-N jumper parted open circuit fault (µPMU2).

Figure 6.28: BG fault event (µPMU1).
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Figure 6.29: BG fault event (µPMU2).

Figure 6.30: Tap lowering (µPMU5).
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Figure 6.31: Tap lowering (µPMU6).

Figure 6.32: Tap Raising (µPMU5).
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Figure 6.33: Tap raising (µPMU6).

Figure 6.34: Temporary fault and reclosing (µPMU1).
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Figure 6.35: Temporary fault and reclosing (µPMU2).

Figure 6.36: Transformer outage (µPMU5).
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Figure 6.37: Transformer outage (µPMU10).

Figure 6.38: Transformer energization (µPMU5).
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Figure 6.39: Transformer energization (µPMU10).

Figure 6.40: Transformer trip (µPMU5).
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Figure 6.41: Transformer trip (µPMU10).

Figure 6.42: Off supply complaint (µPMU1).
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Figure 6.43: Off supply complaint (µPMU10).

Figure 6.44: Unbalance voltage complaint (µPMU5).
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Figure 6.45: Unbalance voltage complaint (µPMU10).

6.2.5 Data Validation

The published real-time data from the real DN was used to validate the results ob-

tained for the various real-time events. The generated data are based on a series

of planned normal and abnormal events to observe and understand the dynam-

ics created by them, whereas the real-time network data observed by real µPMUs

can capture all grid dynamics over time. Because event characteristics are solely

determined by the network’s initial conditions and other inherent characteristics,

validation focuses on the main parameter features of individual events, such as node

voltage and line currents and their variations.

The generated µPMU data for real-time events such as capacitor bank switching,

fault, CB trip, open, reclosing, and DG switching were validated by comparing it to

publicly available real data. Because real-time data for these events is not available
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in the literature, all other events were validated using the load flow variations at the

respective nodes.

6.2.6 Capacitor Bank Switching

The switching of capacitor banks in power systems is referred to as a capacitor-bank-

switching event. These occurrences can result in transient and voltage disturbances,

which can damage equipment or cause system failure. As a result, detecting and

monitoring these events in real-time is critical. This is possible by combining cur-

rent and voltage sensors with the µPMUs installed in the DN. The sensors detect

capacitor-switching events by measuring current and voltage signals.

6.2.6.1 Capacitor Bank Switch-Off Event

When the capacitor bank was turned off, all three-phase voltages decreased from

their initial values, but all variations remained within the defined limits. The R-

phase current increased, the Y-phase current did not change, and the B-phase current

decreased. The generated data voltage and current variations (Figures 6.46 and

6.47) were compared and validated with the real µPMU data observed during the

capacitor bank switch-off event (Figure 6.48) published in [127].

6.2.6.2 Capacitor Bank Switch-On Event

The generated data’s voltage and current fluctuations shown in Figures 6.49 and

6.51 are as expected. The capacitor bank switch-on event raised the node voltage at

all phases, resulting in a reduction in line currents at each phase. The same scenario

was compared and validated against the actual µPMU data from [127] (Figure 6.51).
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Figure 6.46: Capacitor bank switch-off event (voltage variations).

Figure 6.47: Capacitor bank switch-off event (current variations).

The three-phase capacitor bank switching study demonstrates that transient cur-

rents during switching events are affected by the initial conditions, with the possi-

bility of a rise and fall in current values. Until the parameter studies show that the
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Figure 6.48: Capacitor bank switch-off event: voltage and current variations
validation using real µPMU data [127].

Figure 6.49: Capacitor bank switch-on event (voltage magnitude).

system is within the limits, it is considered normal.

6.2.7 Fault, Trip, CB Open, and Reclose Events

Figures 6.52 and 6.53 show the generated event data for the fault, trip, CB open, and

reclose events observed by the upstream and downstream µPMUs. These findings

are based on a modeled network-generated B-phase-to-ground fault. The real data
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Figure 6.50: Capacitor bank switch-on event (current magnitude).

Figure 6.51: Capacitor bank switch-on event (voltage and current magnitude)
validation using real µPMU data [127].

in [56] are for a B-phase-to-neutral fault, but if the neutral wire in a three-phase

distribution system is solidly grounded, a phase-to-neutral fault is a type of phase-

to-ground fault. Because the neutral wire in a solidly grounded system is directly

connected to the earth, any fault on the neutral wire will cause a current to flow

directly to the ground. As a result, even though the fault originated on the neutral

wire, it can be classified as a phase-to-ground fault [128]. These events were validated

by comparing them to published real data while using the relay settings from [56],
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as shown in Figure 6.54.

As soon as the fault occurs, the upstream µPMU shows a significant drop in voltage

and a rise in B-phase current, with minor changes in other phases. Almost all of

the phase voltages show similar values after the breaker trip event, but all of the

phase current values reach near zero. When CB completely opens, all phase voltages

reach their normal limits, and three-phase currents drop to zero. As the breaker is

closed and the loads are immediately connected after the reclose event, all node

voltages and line currents return to their pre-fault normal values. This means that

the fault was only temporary, and that closing the CB will ensure the network’s and

components’ health.

Figure 6.52: B-G fault, trip, CB open, and reclose events observed at upstream.

The downstream µPMU observes the same fault and trip events as the upstream

µPMU, but right after the CB opens, both voltage and current values of the phases

drop to zero. The reclose event observed by this µPMU is consistent with normal

pre-fault voltage and current values.
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Figure 6.53: B-G fault, trip, CB open, and reclose events observed at down-
stream.

The generated fault event results are comparable to the fault occurrence process

dynamics and reclose events presented in [56].

6.2.8 DG-Switching Event

The DG switch-on event is being considered for validation because the real data

available in the literature is for this event. The node voltage per phase drops slightly

from the initial conditions and settles to a comparatively lower value than the initial

values per phase, whereas the currents overshoot to a high value and settle to a

slightly higher value than the initial line current magnitude. The DG-switching

event generated in Figure 6.55 is validated against the DG-switching event captured
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Figure 6.54: B-G fault, trip, CB open, and reclose events observed at upstream
(Plot a, Plot b) and downstream (Plot c, Plot d) (voltage and current magnitude)

[56].

in [129]. Figure 6.56 depicts the actual µPMU observations. The results are roughly

comparable to the published real µPMU values.

Figure 6.55: DG-switching event (voltage and current variations).

6.2.9 Other Events

Because comprehensive observations of the remaining events with regard to mea-

surements of node voltage and line current are not fully captured in the literature,
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Figure 6.56: DG-switching event observed by the real µPMU [129].

the remaining events are validated based on the fluctuations in load flow in the

upstream and downstream µPMUs of the respective component. The verified infor-

mation demonstrates their suitability for use in creating and evaluating specialized

real-time DCC operational support applications for event localization, classification,

and detection. This will facilitate planned and unforeseen daily operations for DCC

operators and raise network reliability metrics.

As this study focused on the fault events, the generated data for different fault classes

were mainly investigated and the data variations observed at different µPMUs are

taken into consideration for further analysis. The data variations monitored by the

master µPMU during the occurrence of the different fault events are listed in table

6.4.

Table 6.4: Line currents measured at master µPMU
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6.2.10 Experimental Use Case Test

An exploratory experimental study using the most pertinent real-time use case was

conducted to show the applicability of generated realistic µPMU data.

Use Case: Event Classification

The classification of an event that occurred in the network is the real-time use case

that is being tested in this part. The goal of the experiment is to use the network-

collected µPMU data to identify no-fault and fault events. The line currents recorded

by the µPMUs are used for this inquiry. The fundamental algorithm listed below is

used to categorize the events:

Step 1: Calculate the minimum short circuit currents (MinSCC) of the network per

phase.

Step 2: If the line currents measured by the master µPMU (µPMU1) per phase

are greater than or equal to the MinSCC of any phase, and if any of the µPMU

measures a line current greater than 0.5 p.u. (This is an initial threshold set solely

for the purpose of validating the generated data using fault simulation studies. This

threshold may change if more scenarios or use cases are added to the analysis while

fine-tuning the fault detection algorithm.) for a duration of more than 20 ms or

0.020 s (this time duration is selected for use case test purposes only), then it is a

“fault event”; otherwise, it is a “no-fault event”.

The MinSCC of phases A, B, and C are 0.2834 p.u., 0.2503 p.u., and 0.2343 p.u.,

respectively. Three-event data, such as tap changer (VR1), capacitor switching

(844), and phase-to-ground fault (at 99.99% of line section “m” with 20 ohms), are

used to test the data-driven approach. The results of these tests are shown in Table
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6.5. The results show that the per-unit values of the line currents per phase for the

tap changer and capacitor-switching events do not satisfy the conditions of the fault

event, as the values do not touch the defined thresholds. The generated data was

Table 6.5: Use case test results: fault and no-fault event classification.

verified using real-time simulation (RTDS) results. This verification process involved

implementing the modified IEEE 34 node feeder in RSCAD, along with strategically

positioned software µPMUs and DGs. The Real-time simulator testbed, depicted in

Figure 6.57, was utilized for validating the generated data.

Figure 6.57: RTDS testbed for genertaed data validation

6.3 Conclusions

DP software was used to achieve realistic µPMU data production for a variety of

real-time events in an unbalanced DN. The goals of steady-state and dynamic data
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creation in an unbalanced benchmark DN were achieved by merging real-time ex-

perience and µPMU elements in DP conditions. The generated data include all

conceivable real-time events that could occur in the actual DN, and the parameter

modifications are seen on their corresponding charts. Due to the difficulty of getting

the original µPMU data for a variety of reasons, researchers can utilize this method

to generate realistic data by duplicating the µPMU effect on the generated data.

This shortens the time needed for research and data collection. Moreover, accurate

and practical data that correspond to the duplicated µPMU data are provided. The

main objective of this research was to exploit the generated data for several µPMU

use cases, such as event detection, categorization, and localization. Future studies

will look at a number of studies to improve the usefulness of the data in research

projects and incorporate various data quality issues into the generated data.



Chapter 7

I-FDCSI Method Development,

Testing and Validation

7.1 Introduction

To ensure the effective operation of power systems, DN must be reliable. The bulk

power system is connected to the end consumers through the distribution network,

which is the last phase of the power delivery system. There are many different faults

that can occur in the distribution network, including short-circuits, open-circuits,

and earth faults, which can result in power outages and degrade the quality of the

power supply. In order to reduce the impact on the system and restore the power

supply, it is crucial to identify and pinpoint distribution network problems as early

as feasible. Because of their inherent qualities, DNs, as opposed to transmission

networks, are more susceptible to disturbances. Examples include their complex

network topology, geographic dispersion over large areas, uneven loading, small am-

plitude and angle differences between nodes, and faster dynamics (caused by the

108
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presence of numerous distributed generations (DG), capacitor banks, autoreclosers,

load break switches, fuses, etc.). In power systems, including unbalanced DN, short

circuit faults are more frequent than open circuit faults. This is because, unlike

open circuit faults, which normally only result from a certain kind of failure, such

as a broken conductor or defective switch, short circuit faults can happen for a va-

riety of reasons, including equipment failure, lightning strikes, and other transitory

events. As a result, our examination is exclusively concerned with short circuit fail-

ures. Analysis of the voltage and current signals at the substation forms the basis

of conventional methods for fault identification and classification. These techniques

use voltage and current signals to identify and categorize distribution network is-

sues. Nevertheless, the voltage and current data at the substation don’t offer enough

details to precisely identify and locate the distribution network issues. This is be-

cause the network architecture and load changes have an impact on the voltage and

current signals at the substation, which can result in false alarms and incorrect fault

categorization. µPMU was created to address the shortcomings of the traditional

fault detection and classification approaches. The µPMUs are compact devices that

are synchronized with the power system frequency and are capable of measuring

voltage and current signals with great resolution. To record the dynamic system

behavior under fault conditions, the µPMU can be deployed at various points in

the distribution network. It is possible to create novel fault detection and classifi-

cation techniques by using the synchronized data from the µPMU, which can offer

more precise information about the position and nature of the issue. Based on the

synchronized measurements from the µPMU, novel fault detection and classification

algorithms have been developed in a number of research papers. These techniques

use high-resolution synchronized readings from the µPMU to identify the problem-

atic area of the distribution network and to detect and classify various fault kinds.

Nevertheless, the majority of these techniques rely on machine learning algorithms,
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which demand a significant quantity of training data and computing power. The cal-

iber and accessibility of the training data has an impact on these methods’ success

as well. Particularly when noise and measurement errors are present, traditional

defect detection and classification approaches sometimes have poor accuracy and

lengthy detection times [130]. µPMU have become a promising technology in recent

years for enhancing the precision and timeliness of fault detection and location in

DN [131]. Recent years have seen a significant amount of study on the application

of µPMU for DN defect detection and classification [132]. However, there is still a

need for fault detection and classification methods for DN that are more precise and

effective, especially when there is noise, measurement error, and distributed energy

resources (DERs) present [133]. Since there were no real-world µPMU data, the

author created µPMU data that were realistic for a variety of real-time events in an

unbalanced distribution network to mimic real grid dynamics [134]. The thresholds

for the various algorithms established in this paper were drawn from the dynamics

of fault events and line current variations. The integrated fault detection, classifi-

cation, and section identification (I-FDCSI) approach for real DN using µPMU is

proposed in this work. The I-FDCSI approach is based on a set of guidelines created

with the help of subject-matter expertise and statistical analysis of the measured

data. The suggested method may deliver precise fault detection and classification

results with a short response time and does not require a lot of training data or

computational resources. The suggested method’s effectiveness has been assessed

on a benchmark distribution network and contrasted with that of more established

methods for section identification and fault classification.

The fault detection, fault classification, and fault section identification techniques

are combined in the I-FDCSI approach. According to the flow depicted in Figure

7.1, these algorithms are carried out one by one.
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Figure 7.1: Block Diagram of I-FDCSI Algorithm.

The real-time data measured and reported by the µPMU deployed at key areas

of the DN form the basis for all three rules-based algorithms. The IEEE 34 node

test feeder has been chosen as the DN for this study. The components and load flow

parameters used for this feeder’s modeling and simulation are plainly stated in [134].

Six distributed generations (DG) with a combined capacity of 20% of the feeder load

have been inserted into the test feeder. Moreover, 12 µPMUs are installed in the

feeder at strategic locations. The locations of the DG and µPMU for the IEEE

Figure 7.2: IEEE 34 node model with DGs and µPMU locations.
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34 node test feeder are shown in Figure 7.2. The DG locations, sizes, and µPMU

placements are chosen in accordance with [134].

7.2 Calculate the Minimum and Maximum Short

Circuit Current Ratio per Phase (MinSCCR and

MaxSCCR) of the Network

To calculate the MinSCCR per phase, the below steps are followed.

1. Calculate the Line to ground (LG) fault for each line (a–g, b–g and c–g) with

a non-zero resistance (resistance kept at 20 ohms for this study) placed at

the farthest point (99.99% of the line section) in the eight laterals of the DN

including the main feeder [135].

2. Find the lateral with minimum short circuit current in the DN. The lateral

with the minimum short circuit current is 800-832-890.

3. The minimum short circuit current per phase (IMinSCC) of the DN without

DGs and load switchings measured at the feeding Node (800) reported through

the master µPMU (µPMU1) are:

IaMinSCC = 0.2834 p.u, (7.1)

IbMinSCC = 0.2503 p.u, (7.2)

IcMinSCC = 0.2343 p.u, (7.3)
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4. The minimum short circuit currents per phase (IMinSCC) of the DN with DGs

(in this study, one DG is switched on at a time with 20% capacity of the total

feeder load) measured at the feeding node (800) reported through the master

µPMU (µPMU1) are:

IaMinSCC = 0.2346 p.u, (7.4)

IbMinSCC = 0.2046 p.u, (7.5)

IcMinSCC = 0.1898 p.u, (7.6)

5. The minimum short circuit currents per phase (IMinSCC) of the DN with load

switchings (in this study, the maximum spot load and maximum distributed

load of the DN is kept off simultaneously to calculate the minimum short circuit

and fine tune the algorithm) measured at the feeding node (800) reported

through the master µPMU (µPMU1) are:

IaMinSCC = 0.2008 p.u, (7.7)

IbMinSCC = 0.2084 p.u, (7.8)

IcMinSCC = 0.1982 p.u, (7.9)

6. The minimum short circuit current ratio per phase (MinSCCR) is the ratio of

measured line currents (IMeas) to the minimum short circuit current. Equa-

tions (7.4)–(7.9) are used to find the minimum short circuit current per phase.

MinSCCRa = IaMeas/IaMinSCC (7.10)
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MinSCCRb
= IbMeas/IbMinSCC (7.11)

MinSCCRc = IcMeas/IcMinSCC (7.12)

where, IaMeas, IbMeas, and IcMeas are line currents measured by the master

µPMU1 per phase and IaMinSCC , IbMinSCC , and IcMinSCC are the minimum

short circuit current of the network per phase. The MinSCCR is calculated very

accurately to investigate the high impedance faults in the network. During the

high impedance faults, the current magnitude will be much less compared to

the low and medium impedance faults.

7. Calculate the minimum fault current threshold for the installed µPMUs with-

out DGs and load switching: this is performed by simulating all the fault types

in the farthest point (at section “m”) of lateral with minimum short circuit cur-

rent which can be observed by the installed nearby µPMU10. From all the

simulated fault types, L-L-G faults give the minimum values of the short circuit

currents per phase per µPMUs (IMeasi). The values obtained from simulations

are:

IaMeasi = 0.6138 p.u, (7.13)

IbMeasi = 0.6246 p.u, (7.14)

IcMeasi = 0.6166 p.u, (7.15)

IµPMUt = (IaMeasi + IbMeasi + IcMeasi)/3 = 0.6183 p.u, (7.16)

where i = 1, 2, ..., 12 (number of µPMUs).
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8. Calculate the minimum fault current threshold for the installed µPMUs with

DG connection: this is performed by simulating all the fault types in the far-

thest point (at section “m”) of lateral with minimum short circuit current which

can be observed by the installed nearby µPMU10. From all the simulated fault

types, L-L-G faults give the minimum values of the short circuit currents per

phase per µPMUs (IMeasi). The values obtained from simulations are:

IaMeasi = 0.6031 p.u, (7.17)

IbMeasi = 0.6111 p.u, (7.18)

IcMeasi = 0.6045 p.u, (7.19)

IµPMUt = (IaMeasi + IbMeasi + IcMeasi)/3 = 0.6062p.u, (7.20)

where i = 1, 2, ..., 12 (number of µPMUs).

9. Calculate the minimum fault current threshold for the installed µPMUs with

load switchings: This is carried out by simulating all the fault types in the

farthest point (at section “m”) of lateral with minimum short circuit current

which can be observed by the installed nearby µPMU10 keeping the maximum

spot load and maximum distributed load in off mode simultaneously. From

all the simulated fault types, L-L-G faults give the minimum values of the

short circuit currents per phase per µPMUs (IMeasi). The values obtained

from simulations are:

IaMeasi = 0.4349 p.u, (7.21)

IbMeasi = 0.4182 p.u, (7.22)
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IcMeasi = 0.4229 p.u, (7.23)

IµPMUt = (IaMeasi + IbMeasi + IcMeasi)/3 = 0.4253 p.u, (7.24)

where i = 1, 2, ..., 12 (number of µPMUs).

10. Calculate the maximum short circuit current that can be monitored by all the

installed µPMUs: this is basically calculated by simulating a three-phase fault

at the closest point (at 0.001% of the line section) of the immediate downstream

line section of each µPMUs with a 0 Ω (p.u) fault resistance [135]. For the

µPMUs installed at the single phase to neutral laterals, a line-to-ground fault

simulation is carried out instead of a three-phase fault. The maximum short

circuit current per phase of all the installed µPMUs is shown in Table 7.1.

The accuracy and quality of the data generated by micro-PMUs can be affected

by various factors. This can make it challenging to accurately identify and

diagnose faults in real-time. So for this study, lower and upper thresholds are

set for each µPMUs based on the calculated minimum and maximum short

circuit current ratio per phase. During the data processing, the values outside

these thresholds are filtered out before applying to the algorithms.

7.3 Fault Detection Algorithm

To detect the fault in the DN with strategically placed µPMUs, a real-time measure-

ment rules-based algorithm is implemented. Fault to trip duration settings(40ms)

were adapted from a real-world µPMU data analysis carried out in [56].The flow

chart of the algorithm using these rules is shown in Figure 7.3. The FD algorithm

uses the rules 7.25, 7.26, and 7.27.
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Table 7.1: Maximum short circuit currents that can be monitored by each
µPMU.

7.3.1 Rules for Fault Detection without DG and Load Switch-

ing

If

(SCCRamin ≥ 1) or (SCCRbmin ≥ 1) or (SCCRcmin ≥ 1 ) & (IMeasi < 0.6183)

for a time, t = 1 to 40ms

then, “Fault Detected at first stream before the first microPMU′′.

else if

(SCCRamin ≥ 1) or (SCCRbmin ≥ 1) or (SCCRcmin ≥ 1 ) & (IMeasi ≥ 0.6183)

for a time, t = 1 to 40ms

then, “Fault Detected′′.

else

“Fault Not Detected′′.

(7.25)
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Figure 7.3: Fault detection flow chart.
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7.3.2 Rules for Fault Detection with DG

If

(SCCRamin ≥ 1) or (SCCRbmin ≥ 1) or (SCCRcmin ≥ 1 ) & (IMeasi < 0.6062)

for a time, t = 1 to 40ms

then, “Fault Detected at first stream before the first microPMU′′.

else if

(SCCRamin ≥ 1) or (SCCRbmin ≥ 1) or (SCCRcmin ≥ 1 ) & (IMeasi ≥ 0.6062)

for a time, t = 1 to 40ms

then, “Fault Detected′′.

else

“Fault Not Detected′′.

(7.26)

7.3.3 Rules for Fault Detection with Load Switching

If

(SCCRamin ≥ 1) or (SCCRbmin ≥ 1) or (SCCRcmin ≥ 1 ) & (IMeasi < 0.4253)

for a time, t = 1 to 40ms

then, “Fault Detected at first stream before the first microPMU′′.

else if

(SCCRamin ≥ 1) or (SCCRbmin ≥ 1) or (SCCRcmin ≥ 1 ) & (IMeasi ≥ 0.4253)

for a time, t = 1 to 40ms

then, “Fault Detected′′.

else

“Fault Not Detected′′.

(7.27)
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7.4 Fault Classification Algorithm

Figure 7.4: Fault classification flow chart.

The detected faults in the system are classified by establishing distinct rules for

various classes of faults. These rules are formulated through a thorough investigation

of all possible fault combinations. Each fault class is assigned specific criteria to

determine its classification. The algorithm follows a flow chart, depicted in Figure

7.4, which outlines the sequence of steps based on these rules.
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7.4.1 Rules for Line to Ground Faults (L-G)

If

(SCCRamin ≥ 1) or (SCCRbmin ≥ 1) or (SCCRcmin ≥ 1 )

then, “L−G Fault ′′.

else

“Not L−G Fault ′′.

(7.28)

7.4.1.1 Rules for A-G Fault

If

(SCCRamin ≥ 1) & (SCCRbmin < 1) & (SCCRcmin < 1 )

then, “A−G Fault ′′.

else

“Not A−G Fault ′′.

(7.29)

7.4.1.2 Rules for B-G Fault

If

(SCCRamin < 1) & (SCCRbmin ≥ 1) & (SCCRcmin < 1 )

then, “B−G Fault ′′.

else

“Not B−G Fault ′′.

(7.30)
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7.4.1.3 Rules for C-G Fault

If

(SCCRamin < 1) & (SCCRbmin < 1) & (SCCRcmin ≥ 1 )

then, “C−G Fault ′′.

else

“Not C−G Fault ′′.

(7.31)

7.4.2 Rules for Line to Line Faults (L-L)

If

(SCCRamin ≥ 1) & (SCCRbmin ≥ 1) or

(SCCRbmin ≥ 1) & (SCCRcmin ≥ 1) or

(SCCRcmin ≥ 1) & (SCCRamin ≥ 1)

then, “L− L Fault ′′.

else

“Not L− L Fault ′′.

(7.32)

7.4.2.1 Rules for Line to Line Faults (A-B)

If

(SCCRamin ≥ 1) & (SCCRbmin ≥ 1) &

(SCCRcmin < 1)

then, “A−B Fault ′′.

else

“Not A−B Fault ′′.

(7.33)
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7.4.2.2 Rules for Line to Line Faults (B-C)

If

(SCCRbmin ≥ 1) & (SCCRcmin ≥ 1) &

(SCCRamin < 1)

then, “B−C Fault ′′.

else

“Not B−C Fault ′′.

(7.34)

7.4.2.3 Rules for Line to Line Faults (C-A)

If

(SCCRcmin ≥ 1) & (SCCRamin ≥ 1) &

(SCCRbmin < 1)

then, “C−A Fault ′′.

else

“Not C−A Fault ′′.

(7.35)

7.4.3 Rules for Line to Line to Ground Faults (L-L-G)

If

(SCCRamin ≥ .97) & (SCCRbmin ≥ .97) or

(SCCRbmin ≥ .97) & (SCCRcmin ≥ .97) or

(SCCRcmin ≥ .97) & (SCCRamin ≥ .97)

then, “L− L−G Fault ′′.

else

“Not L− L−G Fault ′′.

(7.36)
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7.4.3.1 Rules for Line to Line Faults (A-B-G)

If

(.98 ≥ SCCRamin < 1) & (SCCRbmin ≥ 1) &

(.74 ≥ SCCRcmin < 1)

then, “A−B−G Fault ′′.

else

“Not A−B−G Fault ′′.

(7.37)

7.4.3.2 Rules for Line to Line Faults (B-C-G)

If

(.78 ≥ SCCRamin < 1) & (.98 ≥ SCCRbmin < 1) &

(SCCRcmin ≥ 1)

then, “B−C−G Fault ′′.

else

“Not B−C−G Fault ′′.

(7.38)

7.4.3.3 Rules for Line to Line Faults (C-A-G)

If

(SCCRamin ≥ 1) & (.76 ≥ SCCRbmin < 1) &

(.97 ≥ SCCRcmin < 1)

then, “C−A−G Fault ′′.

else

“Not C−A−G Fault ′′.

(7.39)
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7.4.4 Rules for Three Phase Faults (A-B-C)

If

(SCCRamin ≥ 1) & (SCCRbmin ≥ 1) &

(SCCRcmin ≥ 1)

then, “A−B−C Fault ′′.

else

“Not A−B−C Fault ′′.

(7.40)
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7.5 Fault Section Identification Algorithm

Figure 7.5: Fault section identification flow chart.
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Fault section is usually identified in radial DN between the last reported and first

not reported µPMU. The flow chart of the algorithm using these rules is shown in

Figure 7.5.

7.5.1 Rules for First Line Section (“A”) Fault

If

(The fault is detected) &

( None of the microPMUs reported SCCRmin threshold triggers per phase)

then, “fault has happened before the first microPMU, ie, FS = ′A′” .

else

“Not First Section Fault”.
(7.41)

7.5.2 Rules for Rule for Fault Sections at MicroPMU Nodes

If

(The fault is detected) &

(US Line current per phase of the last reported uPMU ≥ SCCRmin) &

(DS1 Line current per phase of the last reported uPMU < SCCRmin)

then, “fault has happened at the reported microPMU Node, itself ” .

else

“Fault Section is Not at microPMU Nodes”.
(7.42)



Chapter VII. I-FDCSI Method Development, Testing and Validation 128

7.5.3 Rules for Fault Sections at Immediate Line Section af-

ter the DS1 of the Reported MicroPMUs with One Up-

stream (US) and One Down Stream (DS)

If

(The fault is detected) &

(US Line current per phase of the last reported uPMU ≥ SCCRmin) &

(DS1 Line current per phase of the last reported uPMU ≥ SCCRmin)

then, “FS is between the DS1 & immediate section after DS1”.

else

“Fault Section is Not between the DS1 & immediate section after DS1”.
(7.43)

7.5.4 Rules for Fault Section Identification When MicroP-

MUs are Installed at Junction Nodes (with One US

and Two DS)

Here, stream leading to the main feeder line from the junction node is considered as

DS1 and the stream leading to the laterals are considered as DS2.

If

(The fault is detected) &

( US Line current per phase of the last reported uPMU ≥ SCCRmin) &

(DS1 Line current per phase of the last reported uPMU < SCCRmin) &

(DS2 Line current per phase of the last reported uPMU < SCCRmin)

then, “fault has happened at the reported microPMU Junction node, itself ” .

else

“Fault Section is Not at microPMU junction Nodes”.
(7.44)
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7.5.5 Rules for Fault Sections at Immediate Line Section after

the DS1 of the Reported Junction Node MicroPMUs

with One US and Two DS
If

(The fault is detected) &

( US Line current per phase of the last reported uPMU ≥ SCCRmin) &

(DS1 Line current per phase of the last reported uPMU ≥ SCCRmin) &

(DS2 Line current per phase of the last reported uPMU < SCCRmin)

then, “FS is between the DS1 & immediate section after DS1”.

else

“Fault Section is Not between the DS1 & immediate section after DS1”.
(7.45)

7.5.6 Rules for Fault Sections at Immediate Line Section after

the DS2 of the Reported Junction Node MicroPMUs

with One US and Two DS
If

(The fault is detected) &

( US Line current per phase of the last reported uPMU ≥ SCCRmin) &

(DS1 Line current per phase of the last reported uPMU < SCCRmin) &

(DS2 Line current per phase of the last reported uPMU ≥ SCCRmin)

then, “FS is between the DS2 & immediate section after DS2”.

else

“Fault Section is Not between the DS2 & immediate section after DS2”.
(7.46)
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By developing separate dedicated algorithms for fault detection, classification, and

section identification, power distribution networks can be optimized to address spe-

cific scenarios effectively. Scenario-specific rule sets and thresholds can be estab-

lished within each algorithm, ensuring robust performance across diverse operating

conditions, including scenarios with and without load and distributed generation

switchings. This modular approach enables easy adaptation and customization of

algorithms to suit evolving network requirements and emerging challenges associated

with load dynamics and distributed generation integration.

7.6 Integration of FDCSI Algorithm

Figure 7.6 shows the integrated algorithm for fault detection, classification, and sec-

tion identification. This task is performed by combining the different algorithms

step-by-step to ensure that all the steps are followed in order to meet the objectives

of the algorithm process.

The integration of the Fault Detection, Classification, and Section Identification

(FDCSI) Algorithm offers a compelling technical solution for expediting service

restoration in real-time distribution networks. By consolidating fault detection, clas-

sification, and section identification into a unified framework, the FDCSI Algorithm

enables rapid and precise fault localization, minimizing downtime and enhancing

network reliability. This integration streamlines decision-making processes by pro-

viding comprehensive insights to network operators, facilitating quicker responses

to faults. Additionally, the FDCSI Algorithm optimizes resource allocation by ac-

curately identifying the affected network section, ensuring efficient deployment of

maintenance crews and resources. Furthermore, it enhances situational awareness
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Figure 7.6: I-FDCSI Flow Chart.

by offering a holistic view of network status in real-time, allowing operators to pri-

oritize restoration efforts effectively. The adaptability of the FDCSI Algorithm to
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dynamic network conditions, including load variations and distributed energy re-

source integration, ensures consistent and reliable performance across diverse oper-

ating scenarios. Overall, the integration of the FDCSI Algorithm represents a valu-

able advancement in enhancing the resilience, reliability, and efficiency of real-time

distribution networks, ultimately leading to improved service quality and customer

satisfaction.

7.7 Testing and Validation of Algorithms

The validation of the individual algorithms and integrated algorithms is performed

by the proposed rules-based I-FDCSI method for real distribution networks using

µPMU. The method was tested and validated using data from a real benchmark

distribution network using RTDS Simulator. The rules-based algorithms were sub-

jected to validation using the RTDS test bed, shown in figure 7.7.

Figure 7.7: RTDS testbed for I-FDCSI Algorithm validation

The method was tested on all the possible faults with different % of sections ranging

from 0.001% to 99.99% and with different fault resistances (0.01 Ω, 1 Ω, 2.5 Ω, 5 Ω,
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10 Ω, 15 Ω, and 20 Ω) and was able to successfully detect, classify, and sectionalise

faults with a high degree of accuracy. For all the classes and sections of faults, the al-

gorithm is giving highly accurate results for both simulated data and the generated

realistic µPMU data. Additionally, the method was able to accurately estimate the

fault when the fault occurs at the nodes, which is important for the isolation of the

faulted section from the healthy portion of the network and restoration of service.

Overall, the testing and validation results demonstrate the effectiveness and accu-

racy of the proposed I-FDCSI method for fault detection, classification, and section

identification in real distribution networks using µPMU.

7.7.1 Fault Detection Test

The developed algorithm was tested with different events such as load switching, DG

switching, tap change event, capacitor switching and fault events and the results of

non-fault events and fault event detection are plotted in Table 7.2.

Table 7.2: Fault detection algorithm test results.
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7.7.1.1 No-Fault Event Test

All the non-fault events tested using the FD algorithm were not detected as “fault”.

The events include load switching (Figure 7.8), DG switching event (Figure 7.9),

tap changer event (Figure 7.10), and capacitor switching event (Figure 7.11).
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Figure 7.8: Load switching event results from master µPMU.
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Figure 7.9: DG switching event simulation results from master µPMU.
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Figure 7.10: Tap change event simulation results from the master µPMU.
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Figure 7.11: Capacitor switching simulation results from master µPMU.

None of these events were detected as faults because these events are not satisfying

the defined FD algorithm conditions.
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7.7.1.2 Fault Event Test

All the fault events tested crossed the thresholds of at least one phase to satisfy

the fault detection rules. The thresholds are set after fine-tuning the line currents

during the fault with respect to the maximum impedance location of the network or

the farthest point from the main feeder.
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Figure 7.12: A-B-C fault detection simulation results from the master µPMU.

Even though the unbalanced loads are showing frequent variations in the line cur-

rents per phase, all the tested fault events met at least one phase threshold to detect

the fault. The A-B-C fault detection simulation results from the master µPMU and

nearest µPMU are shown in Figures 7.12 and 7.13 respectively. The results cross the

threshold values and conditions of the FD algorithm. Hence, the fault is detected.

The fault detection algorithm test results are shown in Table 7.2. Out of the tested

events, almost all the fault events with different types of faults worked perfectly

using the developed algorithm. The first stream fault tested at line section ’A’ was

also detected by the algorithm.
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Figure 7.13: A-B-C fault detection simulation results from the nearest µPMU.

7.7.2 Fault Classification Test

The developed algorithm was tested with different classes of faults such as LG,

LL, LLG, and LLL. Their simulation results are plotted below figures and their

summary is listed in Table 7.3. All the classes of faults at different locations and

fault resistances (0 Ω , 0.001 Ω, 0.01 Ω , 1 Ω, 5 Ω, 10 Ω , 15 Ω, and 20 Ω). A total

of 24,480 simulations with all the possible fault classes were carried out to test the

classification algorithm with real-time time fault scenarios.

7.7.2.1 LG Fault

Figure 7.14 shows the results of L-G fault classification through the measurement

observed by the master µPMU. The result of L-G fault classification through the

measurement observed by the µPMU near the fault is shown in Figure 7.15.
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Figure 7.14: LG fault classification simulation results from the master µPMU.
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Figure 7.15: LG fault classification simulation results from the nearest µPMU.
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7.7.2.2 LL Fault

The line currents variations observed by the master µPMU and the nearest µPMU

during the LL fault are shown in Figures 7.16 and 7.17, respectively.
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Figure 7.16: LL fault classification simulation results from the master µPMU.
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Figure 7.17: LL fault classification simulation results from the nearest µPMU.
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7.7.2.3 LLG Fault
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Figure 7.18: LLG fault classification simulation results from the master µPMU.
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Figure 7.19: LLG fault classification simulation results from the nearest µPMU.

The algorithm classified the LLG fault from the line current observations of master

µPMU and the µPMU nearest to the fault location is shown in Figures 7.18 and 7.19.
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7.7.2.4 LLL Fault
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Figure 7.20: LLL fault classification simulation results from the master µPMU.

Figure 7.20 shows the results of the classified LLL fault observed by the master

µPMU and the line current values of different phases are different from each other

compared to the line currents observed by the nearest µPMU as shown in Figure 7.21.

The fault classification algorithm test was conducted for different scenarios and the
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Figure 7.21: LLL fault classification simulation results from the nearest µPMU.

results are shown in the Table 7.3.
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Table 7.3: Fault classification algorithm test results.

7.7.3 Fault Section Identification Test

The developed algorithm was tested with different sections of the DN. During the

test, all the modes of the network connections were investigated such as nodes with

one US and one DS, one US and two DS and the fault section including the US,

node and DS. A couple of FSI results are listed in Table 7.4.

Table 7.4: Fault section identification algorithm test results.

7.7.4 I-FDCSI Algorithm Test

The fault detection, classification and section identification algorithms were com-

bined with steps and tested. The results show its applicability to further develop it

as a supporting stand-alone application for DCC operators. A couple of results are

recorded and shown in Table 7.5.
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Table 7.5: I-FDCSI algorithm test results.

7.8 Conclusions

In conclusion, this chapter presents an I-FDCSI method for real distribution net-

works using µPMU. The proposed method is based on rules and uses current mea-

surements from µPMU for fault detection, classification, and section identification.

The performance of the I-FDCSI method was tested and validated on a real dis-

tribution network with different types of faults, and the results demonstrated that

the proposed method achieved high accuracy and efficiency in fault detection, clas-

sification, and section identification. The I-FDCSI method can provide valuable

information to distribution system operators for quick and accurate fault identifica-

tion and restoration, which can improve the reliability and resiliency of distribution

networks. The proposed method can also facilitate the integration of distributed

energy resources and enable the development of smart distribution systems. Over-

all, the I-FDCSI method presented in this paper is a promising solution for fault

management in real distribution networks using µPMU. Further research can be con-

ducted to optimize the rule-based algorithm and to integrate other parameters such

as voltage measurements for fault diagnosis in distribution systems. The authors

would like to extend future studies in investigating high impedance faults detection

and multiple fault location studies using µPMU.



Chapter 8

Results and Discussions

8.1 Introduction

The following section presents the results and discussions of the Integrated Fault De-

tection, Classification, and Section Identification (I-FDCSI) method. This method

was developed to address the challenges in fault management within power distri-

bution networks, including system changes and disturbances such as the integration

of distributed generation (DG) systems and network topology modifications. The

performance evaluation of the I-FDCSI method is discussed, including the accuracy

of fault detection, the effectiveness of fault classification, and the efficiency of sec-

tion identification. The results are compared with conventional fault management

methods, highlighting the advantages and improvements provided by the I-FDCSI

method. The discussions explore the practical implications and potential applica-

tions of the I-FDCSI method in real-world distribution network scenarios. This

section offers a comprehensive assessment of the I-FDCSI method’s performance

and discusses its significance in enhancing fault management in power distribution

networks.

144
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8.2 I-FDCSI Method Results

8.2.1 Evaluation of the Method

The performance of the method is evaluated using two main measures such as per-

centage error and percentage accuracy. Table 8.1 shows the statistical evaluation

results of the 24,480 simulations carried out on the developed algorithms.

Table 8.1: Evalaution of results.

The results of the evaluation show highly accurate and reliable results to the sim-

ulations carried out up to a fault resistance of 20 ohms. This investigation and

method evaluation paved the way for an important observation of high-impedance

fault detection and multiple faults detection and localization that has been relevant

to real-time DN. The developed algorithms are to be further fine-tuned with addi-

tional simulations on changing the fault resistance to a high value from 20 ohms and

simulating the multiple-section faults. This sheds light on the future scope of this

research work.

Comparative analysis of the rules-based I-FDCSI method with the existing methods

in terms of key features and benefits:

Accuracy: The rules-based I-FDCSI method leverages expert knowledge and incor-

porates a set of rules to detect, classify, and identify faults. This knowledge-based

approach enables accurate fault detection and classification, as it leverages the ex-

perience and expertise of power system experts. The rules are designed to capture
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diverse fault scenarios, making the method robust and reliable in different network

conditions.

Real-time capability: The rules-based I-FDCSI method is designed to operate in

real-time, making it suitable for time-critical applications such as service restoration.

The the utilization of PMUs provides high-resolution synchronized data, enabling

fast fault detection and reducing service restoration time.

Computational requirements: Compared to data-driven methods, the rules-based I-

FDCSI method has lower computational requirements. The rules are based on simple

decision-making processes, requiring minimal computational resources. This makes

the method computationally efficient and suitable for implementation in embedded

systems or devices with limited processing capabilities.

Adaptability: The rules-based I-FDCSI method is adaptable and flexible to different

distribution network configurations and fault scenarios. By incorporating expert

knowledge into the rules, the method can handle various fault types, fault locations,

and network topologies. This adaptability enhances the method’s applicability to

diverse distribution network environments.

8.3 Discussion

The comparative analysis highlights the advantages of the rules-based I-FDCSI

method over other methods in the literature. Its accuracy, real-time capability,

lower computational requirements, and adaptability make it a promising approach

for fault detection and classification, and section identification in DN. The integra-

tion of expert knowledge and the utilization of PMUs contribute to the method’s

effectiveness in achieving faster service restorations and enhancing the reliability
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of distribution networks. To ensure the compatibility of this method with high-

impedance faults and multiple fault events, the algorithms need to be fine-tuned

with further investigations.

8.4 Conclusions

The results and discussions of the Integrated Fault Detection, Classification, and

Section Identification (I-FDCSI) method demonstrate its effectiveness and superi-

ority in fault management for power distribution networks. The evaluation showed

high accuracy in fault detection, precise fault classification, and efficient section

identification. Compared to conventional methods, the I-FDCSI method offers im-

proved accuracy, faster response time, and enhanced reliability. Its practical impli-

cations were highlighted, showcasing its applicability in real-world scenarios. The

I-FDCSI method provides a valuable solution for optimizing fault management, re-

ducing downtime, and improving network resilience and efficiency. Further research

can focus on refining and integrating the method into larger-scale networks for real-

world applications.



Chapter 9

Conclusions and Future Research

9.1 Introduction

The chapter presents the conclusions and future research works of the Integrated

Fault Detection, Classification, and Section Identification (I-FDCSI) method. The

I-FDCSI method was developed as an innovative approach to address the challenges

in fault management for power distribution networks. This section provides a sum-

mary of the key findings and outcomes obtained from the evaluation of the I-FDCSI

method’s performance. The conclusions highlight the effectiveness and advantages

of the I-FDCSI method in accurately detecting, classifying, and identifying faults

in distribution networks. Additionally, this section explores potential avenues for

future research and development to further enhance the I-FDCSI method and its

applications. The identified research gaps and areas of improvement pave the way

for future investigations, including the integration of advanced technologies, opti-

mization algorithms, and the validation of the method in large-scale distribution

148
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networks. Overall, this section presents a comprehensive overview of the conclu-

sions drawn from the I-FDCSI method’s evaluation and outlines potential research

directions for advancing fault management in power distribution networks.

9.2 Summary of Research Findings

The research findings on the Integrated Fault Detection, Classification, and Section

Identification (I-FDCSI) method demonstrate its effectiveness and advantages in

fault management for power distribution networks. The evaluation of the I-FDCSI

method’s performance revealed accurate fault detection, precise fault classification,

and efficient identification of fault sections within the distribution network. The

method outperformed conventional approaches, showing higher accuracy and faster

response times. The results highlighted the I-FDCSI method’s potential in improving

fault management processes, reducing downtime, and enhancing network reliability.

Furthermore, the research findings identified areas for future research, including the

integration of advanced technologies, optimization algorithms, and the validation of

the method in larger-scale distribution networks. Overall, the findings underscore

the significance of the I-FDCSI method in advancing fault management practices

and provide a foundation for further research and development in this field.

9.3 Contribution of the Research

The following are the main contributions of this research work:

• Realistic µPMU data generation for real-time applications, such as event de-

tection, classification and localization.



Chapter IX. Conclusions and Future Research 150

• Validation of the generated data with real data published in the literature and

with the load flow variations in the network.

• Development of an integrated fault detection, classification and section iden-

tification(IFDCSI) method for an unbalanced DN which can be subsequently

used as a standalone operator support application at the distribution control

centres (DCC) to enhance the existing service restoration process.

• Testing and Validation of the I-FDCSI method in unbalanced distribution

benchmark test feeders.

9.4 Research Contribution to Power Distribution

Industry

The research contribution to the power distribution industry from the Integrated

Fault Detection, Classification, and Section Identification (I-FDCSI) method is sig-

nificant. The developed method addresses key challenges faced by the industry in

fault management, particularly in the context of system changes and disturbances

such as the integration of distributed generation (DG) systems and network topol-

ogy modifications. By providing accurate fault detection, precise fault classification,

and efficient identification of fault sections, the I-FDCSI method enhances the overall

reliability and operational efficiency of power distribution networks.

The research findings demonstrate that the I-FDCSI method offers several bene-

fits to the power distribution industry. Firstly, it improves the accuracy of fault

detection, allowing for faster identification and response to faults. This, in turn,

reduces downtime and enhances the reliability of power supply to customers. Sec-

ondly, the precise fault classification provided by the I-FDCSI method enables more
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targeted maintenance and repair actions, optimizing resource allocation and reduc-

ing unnecessary costs. Lastly, the efficient identification of fault sections within the

distribution network facilitates faster service restoration, minimizing the impact on

customers and improving customer satisfaction.

By addressing the limitations of traditional approaches and machine learning-based

methods, the I-FDCSI method offers a transparent and interpretable solution to

fault management. This aspect is crucial in the power distribution industry, where

the ability to understand and explain fault detection and classification decisions is

of utmost importance for operators and engineers.

Overall, the research contribution of the I-FDCSI method to the power distribution

industry lies in its ability to enhance fault management practices, improve reliability,

optimize operational efficiency, and ultimately provide a more robust and resilient

power supply to customers. It offers practical implications for distribution network

operators, enabling them to make informed decisions and take proactive measures

in maintaining and operating power systems effectively.

9.5 Practical Applications of the research works

The research works on the Integrated Fault Detection, Classification, and Section

Identification (I-FDCSI) method have several practical applications in the power

distribution industry. Some of the key practical applications include:

Fault Management and Service Restoration: The I-FDCSI method enables more

accurate and efficient fault detection, classification, and section identification in

power distribution networks. This leads to faster service restoration by allowing
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operators to quickly identify and isolate faulty sections, minimizing downtime and

improving overall network reliability.

Maintenance Planning and Resource Optimization: Precise fault classification pro-

vided by the I-FDCSI method helps in planning and optimizing maintenance activi-

ties. By accurately identifying the fault types and locations, maintenance crews can

prioritize repairs, allocate resources effectively, and minimize unnecessary inspec-

tions or repairs.

Grid Resilience and Reliability Enhancement: The I-FDCSI method contributes to

improving the resilience and reliability of power distribution grids. By promptly

detecting and addressing faults, it helps prevent further damage to the network and

minimize the impact on customers. This results in a more reliable power supply and

enhanced grid resilience.

Integration of Distributed Generation (DG) Systems: As the integration of DG sys-

tems increases, the I-FDCSI method becomes particularly valuable. It can effectively

handle the challenges associated with the integration of DG systems, such as changes

in system behavior, fault characteristics, and fault impedance. The method ensures

accurate fault detection, classification, and section identification even in the pres-

ence of DG systems, facilitating the smooth integration of renewable energy sources

into the distribution network.

Decision Support for Operators and Engineers: The I-FDCSI method provides valu-

able decision support tools for distribution network operators and engineers. It

offers transparent and interpretable fault management processes, allowing operators

to understand and explain the detected faults and their classifications. This assists

in making informed decisions regarding network operations, maintenance strategies,

and resource allocation.
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Overall, the practical applications of the research works on the I-FDCSI method

extend to various aspects of power distribution, including fault management, main-

tenance planning, grid resilience, DG integration, and decision support. These ap-

plications contribute to improving the efficiency, reliability, and overall performance

of power distribution networks, benefiting both network operators and end-users.

9.6 Conclusions, Limitations and Future Work

9.6.1 Conclusions

The evaluation results of the I-FDCSI method demonstrate its high accuracy and re-

liability in fault detection, classification and section Identification simulations up to

a fault resistance of 20 ohms. This investigation has provided valuable insights into

high-impedance fault detection and multiple faults detection and localization, which

are crucial for real-time distribution networks. To further enhance the method’s ca-

pabilities, future work should focus on fine-tuning the algorithms through additional

simulations involving higher fault resistances and multiple-section faults. The com-

parative analysis of the rules-based I-FDCSI method with existing methods reveals

its distinct advantages in terms of key features and benefits:

Accuracy: The rules-based I-FDCSI method leverages expert knowledge and incor-

porates a set of rules that enable accurate fault detection and classification and

section Identification. The method’s robustness is enhanced by its ability to handle

diverse fault scenarios, making it reliable in different network conditions.

Real-time capability: The rules-based I-FDCSI method is designed to operate in

real time, utilizing high-resolution synchronized data from µPMUs. This capability

enables fast fault detection and contributes to reducing service restoration time.
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Computational requirements: Compared to data-driven methods, the rules-based

I-FDCSI method has lower computational requirements. The simplicity of the

decision-making processes based on rules ensures computational efficiency, making it

suitable for implementation in integrated systems or devices with limited processing

capabilities.

Adaptability: The rules-based I-FDCSI method demonstrates adaptability to dif-

ferent distribution network configurations and fault scenarios. The incorporation of

expert knowledge into the rules allows the method to handle various fault types, fault

locations, and network topologies, enhancing its applicability in diverse distribution

network environments. The comparative analysis underscores the advantages of the

rules-based I-FDCSI method over other existing methods. Its accuracy, real-time

capability, lower computational requirements, and adaptability make it a promising

approach for fault detection, classification, and section identification in distribu-

tion networks. The integration of expert knowledge and the utilization of µPMUs

contribute to faster service restoration and improved network reliability. Future

research should focus on fine-tuning the algorithms to ensure compatibility with

high-impedance faults and multiple fault events, further advancing the effectiveness

of the rules-based I-FDCSI method.

9.6.2 Limitations and Future Work

While the Integrated Fault Detection, Classification, and Section Identification (I-

FDCSI) method offers significant benefits, it is important to acknowledge its limi-

tations and identify areas for future work. Some limitations and potential avenues

for future research include:
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Scalability: The scalability of the I-FDCSI method to larger-scale distribution net-

works remains an area of exploration. Further research is needed to validate and

optimize the method’s performance in networks with a higher number of nodes and

complex topologies.

Robustness to Parameter Variations: The I-FDCSI method may face challenges

when confronted with variations in fault parameters, such as fault impedance or fault

inception angles. Future work should focus on enhancing the method’s robustness to

parameter variations and investigating adaptive techniques to handle such variations

effectively.

Real-Time Implementation: The real-time implementation of the I-FDCSI method

is crucial for its practical application in power distribution systems. Future research

should address the computational efficiency and processing speed requirements to

ensure real-time performance, allowing for immediate fault detection and response.

Integration of Advanced Technologies: The incorporation of advanced technologies,

such as machine learning algorithms, artificial intelligence, and data analytics, could

further enhance the capabilities of the I-FDCSI method. Future research can ex-

plore the integration of these technologies to improve fault detection accuracy and

optimize fault classification and section identification processes.

Validation on Field Data: While the I-FDCSI method has been evaluated using

simulations and realistic measurement data, further validation on field data from real

distribution networks is necessary before the field implementation. This will provide

a more comprehensive assessment of its performance and validate its effectiveness

in practical operational scenarios.
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Standardization and Implementation Guidelines: To ensure wider adoption and

practical implementation of the I-FDCSI method, future work should focus on devel-

oping standardization guidelines and implementation frameworks. This will assist

distribution network operators in effectively deploying and utilizing the method in

their fault management practices.

In addition, future research should capitalize on the capabilities of µPMUs, includ-

ing synchronized high-resolution data, to tackle complex fault events such as high

impedance fault detections, which remain problematic for utilities relying on tradi-

tional protection schemes. Another aspect of leveraging µPMUs is the identification

of incipient faults, enabling utilities to anticipate, prepare for, and prevent costly

outages.

In summary, future work should address the scalability, robustness to parameter

variations, real-time implementation, integration of advanced technologies, valida-

tion on field data, and standardization of the I-FDCSI method. Overcoming these

limitations and advancing the research in these areas will further enhance the appli-

cability and effectiveness of the method in fault management for power distribution

networks. Future research should also utilize µPMUs, leveraging synchronized high-

resolution data, to address challenging events like high impedance fault detections,

and to identify incipient faults, enabling utilities to anticipate and prevent costly

outages.
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Table A.1: Line section representation for IEEE 34 node model in DIgSILENT
Powerfactory.
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Table A.2: Load flow results from DP model (node voltages and angles per
phase).
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Table A.3: Load flow results from DP model (line currents and angles per phase).
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Table A.4: List of realistic real-time events generated using DP in the test feeder
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Table A.5: List of realistic real-time events generated using DP in the test feeder
Cont.
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Table A.6: List of realistic real-time events generated using DP in the test feeder
Cont.
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Table A.7: List of realistic real-time events generated using DP in the test feeder
Cont.
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Load flow settings and data

generation settings

Figure B.1: Load flow basic settings.
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Figure B.2: Load flow iteration control settings.

Figure B.3: RMS Simulation basic settings.
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Figure B.4: Data generation step size settings1.

Figure B.5: Data generation step size settings2.
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Figure B.6: Run Simulation Settings.
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