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ABSTRACT  

An all-encompassing automated system for video surveillance, dedicated to 

recognizing faces, consists of various elements: face detection, face alignment, face 

recognition, and alert generation. In today's world, face recognition has become a 

powerful technology utilized in numerous applications, particularly in criminal 

identification. The ongoing manual examination of surveillance videos is an 

arduous process that demands significant visual focus but lacks mental 

engagement, making it prone to mistakes. Therefore, this research presents an 

automated facial recognition system as a solution to tackle these obstacles. 

The current study consisted of three distinct phases. Initially, we conducted an 

evaluation of multiple existing face detection algorithms. After careful analysis, we 

determined that the Single-Shot Multibox Detector (SSD) is the most optimal 

method due to its superior speed and accuracy compared to other alternatives. In 

the following phase, we introduced a new model for face recognition based on 

ensemble learning. Recognizing faces has proven challenging due to factors such 

as pose variations, changes in lighting, aging effects, partial occlusion, and low 

resolution. Contemporary approaches to face recognition have limitations when 

dealing with these unconstrained conditions. Therefore, improving face recognition 

requires incorporating diverse deep learning architectures. Despite advancements 

in traditional deep learning techniques for face recognition systems, there is still a 

need for a robust and efficient solution. To address this gap, the research work has 

been proposed and implemented a Hybrid Ensemble Convolutional Neural 

Network (HE-CNN) model. This model is established through ensemble transfer 

learning from modified pre-trained models and contributes to achieving higher 

accuracy in face recognition tasks. 

The model undergoes a two-phase training approach, incorporating a 

differential learning rate based on a one-cycle policy. This method greatly improves 



  

 

vi 

 

the model's ability to recognize faces. It should be noted that these enhancements 

result in State-of-the-Art performance. To achieve this, the concatenation of Global 

Max Pooling (GMP) and Global Average Pooling (GAP), Batch Normalization 

(BN), a Fully Connected (FC) layer, and dropout are integrated into the 

classification layers of pre-trained models. The incorporation of these suggested 

modifications and refining of the training process, we observed outstanding results 

with a significant increase in recognition accuracy. An ablation study further 

confirms the positive impact of these changes on recognition accuracy. 

Additionally, extensive experiments have been conducted to evaluate the 

performance of the proposed HE-CNN model using benchmark datasets. The 

proposed and implemented model has been evaluated using a self-curated criminal 

dataset to demonstrate its real-time applicability in practical scenarios. Through 

careful parameter selection and customization of layers, the designed model 

achieved remarkable accuracy rates: 99.35% on Labeled Faces in the Wild (LFW), 

91.58% on Cross Pose LFW (CPLFW), 99.63% on Georgia Tech (GT face), 

99.21% on YouTube Faces (YTF), and 95% on the self-curated dataset. Lastly, in 

the presented work, an automated alert system has been created that identifies 

crime-prone areas and helps prevent criminal activities. This is done through the 

analysis of data obtained from the identification of criminals. The system 

proactively alerts law enforcement personnel about high-risk areas so they can be 

prepared and vigilant before any crimes occur. Alerts are sent promptly when 

individuals with criminal records are detected in specified regions. 

In a gist, the present research, “An Automated Face Detection and Recognition 

System for Video Surveillance”, provided an efficient face recognition system 

based on the hybrid model. The hybrid model leverages the benefits of deep 

ensemble transfer learning techniques to construct a fast and highly accurate model. 

The novelty of this research work lies in balancing the trade-off between 

recognition accuracy and computational efficiency. In existing research, there is a 
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trade-off between accuracy and computation. Techniques that achieve high 

accuracy are expensive in terms of computational resources, while others prioritize 

computational efficiency at the cost of accuracy. The present research introduces a 

solution that overcomes this trade-off by presenting a computationally efficient 

model that maintains a high level of accuracy. 
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      CHAPTER-1 

1 INTRODUCTION 

Biometric systems aim to authenticate individuals by utilizing one or multiple 

distinctive biometric characteristics, such as facial features, iris patterns, 

fingerprints, and other similar traits. The biometric traits can be classified into 

behavioral and physiological traits, as shown in Figure 1.1. Traditional 

authentication methods, such as identification cards and passwords, are often lost 

or stolen, while biometric-based systems improve security over traditional 

methods. Broadly, biometric applications can be categorized into three primary 

categories: verification, identification, and screening. Verification involves 

comparing an individual's biometric data with the stored data to validate their 

identity (referred to as one-to-one matching). The second category entails 

comparing an individual's biometric traits with the traits of various individuals 

stored in the system (known as one-to-many matching). In the last category, a small 

number of target persons are matched with unknown persons from a large group of 

people (i.e., many-to-some matching).  

There is a growing need for biometric security solutions to protect against fraud, 

theft, and other risks. Face Recognition (FR) holds a crucial position in biometrics-

based security techniques and has proven to be a valuable tool across a diverse 

range of applications, including disease diagnosis, forensic analysis, secure 

transactions, age estimation, missing person searches, e-passport identification, 

mask recognition, and more [1] [2] [3]. Face Recognition has drawn the most 

attention from researchers among the many biometric applications in recent years 

since it is more covert, non-intrusive, and requires less human involvement than 

other biometrics like the iris, fingerprint, or palmprint. The FR process involves 

analyzing and comparing essential facial features and expressions, aiming to 

enhance the intelligence and safety of our world. This technology finds applications 
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in authentication and surveillance, allowing for the identification of individuals 

and, when needed, the detection of suspicious behavior or suspects. In surveillance 

applications, Face Recognition is a crucial component for person identification. The 

automated FR system encompasses fundamental steps such as face detection, face 

alignment, face recognition, and alert generation, as depicted in Figure 1.2. 

• Face Detection: Identify the faces in an image or video using landmarks on 

the face such as eyes, nose, mouth, etc. 

• Face Alignment: Alignment and normalization of faces for better 

recognition accuracy.  

• Face Recognition: Recognize a specific person by comparing an image or 

video with the stored dataset. 

• Alert Generation: Send an alarm message to the concerned person to 

reduce human intervention to detect people. 

 
Figure 1.1 Classification of Biometric Characteristics 
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Figure 1.2 The Block Diagram of an Automated FR System 

The task of FR in photos and videos is certainly difficult, and reaching 100% 

accuracy is a constant endeavor due to different factors influencing FR system 

performance. Despite intensive efforts, sufficient results have yet to be obtained, 

owing mostly to the numerous factors influencing the accuracy of these systems. 

Numerous studies have found that occlusion, low resolution, noise, illumination, 

position change, face expression, aging, and plastic surgery have an impact on 

recognition accuracy [4] [5] [6]. These components are divided into two categories: 

internal and extrinsic factors [4]. Intrinsic factors are the physical qualities of the 

human face that affect recognition accuracy, such as aging, facial expression, and 

plastic surgery. Extrinsic factors, on the other hand, alter the facial appearance and 

include occlusion, low resolution, noise, lighting, and position change, as shown in 

Figure 1.3. Depending on the nature of the training and test data, Zhao et al. [7] and 

Tan et al. [8] offered three basic scenarios for creating and evaluating FR systems. 

These are Still-to-Still (S2S), Still-to-Video (S2V), and Video-to-Video (V2V) FR 

scenarios, as depicted in Figure 1.4. In the S2S scenario, the FR system utilizes 

Regions of Interest (ROIs) extracted from still images of specific subjects as 

reference data to build a face model during the registration phase. Subsequently, 

the system performs real-time recognition using other still images as operational 
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data. In the S2V scenario, ROIs from reference still images are used to build face 

models, but the system operates on video streams for detection purposes. Lastly, 

the V2V scenario utilizes frames extracted from video streams as dual-purpose 

data, serving both as reference and operational inputs for Face Recognition [9]. The 

S2V FR encounters challenges due to environmental differences between the 

source (registration) and destination (surveillance) domains. The captured images 

used during registration were obtained under controlled conditions. In contrast, the 

images captured by surveillance cameras are subject to unconstrained factors, such 

as low resolution, occlusion, lighting variations, and more. Face Recognition 

systems tailored for Video Surveillance (VS) purposes strive to precisely detect and 

recognize individuals of interest across a distributed network of cameras. 

 

Figure 1.3 The Classification of the Factors Affecting FR Accuracy 

 

Figure 1.4 Different Scenarios for the FR System 
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Extensive research has been dedicated to various face detection and recognition 

techniques. Traditional approaches primarily involve the use of Principal 

Component Analysis (PCA) for Face Recognition, achieving accuracy rates 

ranging from 69% to 95% in controlled environments [10]. PCA has also been 

combined with other methods such as Singular Value Decomposition (SVD) and 

Fisherface techniques, resulting in recognition rates of 93.92% and 99.5% for 

frontal faces [11]. Furthermore, researchers also investigated non-frontal FR 

techniques, such as mirroring, fitting, stretching, segmentation, and Three-

Dimensional (3D) operations [12] [13]. However, the effectiveness of these 

methods tends to decline when facial images are captured in challenging 

environmental conditions, such as inadequate lighting, low-resolution cameras, and 

occluded facial images [14] [15] [16]. With the recent advent of deep learning [17] 

[18], the limitations of traditional methods have come to an end [19]. However, the 

dependency on the enormous amount of data and systems with high computing 

power (e.g., parallel processing systems accelerated with Graphical Processing 

Units (GPUs)) are still the challenges of deep learning techniques [20] [21]. The 

large amount of annotated facial datasets for the FR tasks is difficult to obtain due 

to the privacy concerns of the individuals [22]. The recommended solution to 

address these challenges is deep ensemble transfer learning [23]. It saves our time 

and resources. Transfer learning is a technique for using the feature representation 

from a pre-trained model. Building and training a model from scratch is a tedious 

procedure. Instead of this lengthy process, transfer learning uses the weights from 

the pre-trained architectures to train the new model for the desired task [24]. 

Ensemble learning is employed to enhance recognition accuracy by averaging the 

weights of multiple deep-learning models. It combines the benefits of deep learning 

and ensemble learning to achieve improved generalization performance in the final 

model [25]. The main objective of this research is to develop an efficient system 

that enables the recognition of faces using minimal facial data and computational 

resources while maintaining high accuracy. Therefore, we leveraged the concept of 
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ensemble transfer learning to introduce a highly efficient FR system based on deep 

learning. In the available research articles [26] [27] [28], a trade-off is observed 

between accuracy and computation. Certain articles achieved high accuracy but at 

the expense of computational resources, while others prioritized computational 

efficiency at the cost of accuracy. The proposed and implemented research 

introduces a solution that overcomes this trade-off by presenting a computationally 

efficient model that maintains a high level of accuracy. 

1.1 Motivation 

Face detection and recognition play a crucial role in authentication systems 

based on biometric data, serving purposes in both authentication processes and 

surveillance. As scams and fraudulent activities continue to rise, facial recognition 

has become an essential system for ensuring security. Extensive research has been 

conducted globally to advance this field; however, despite continuous efforts, there 

is still a lack of robust and effective automated systems capable of performing well 

in both controlled and uncontrolled environments. Face Recognition has always 

been a highly intricate and demanding task, as it strives to replicate the human 

ability to perceive and identify faces. Nonetheless, human capabilities have 

limitations when dealing with various ambiguous phenomena. Hence, there is a 

need for an automated electronic system with high recognition accuracy and fast 

processing capabilities. The demand for biometric security systems has witnessed 

a substantial surge in recent times, driven by the need for enhanced protection and 

security against fraud, theft, and other related threats. Among the various biometric-

based systems, Face Recognition has emerged as a prominent and effective 

solution. It serves various applications, including forensics, criminal identification, 

surveillance, and fraud prevention, as it can authenticate an individual’s identity 

and recognize individuals in different scenarios. Face Recognition system is used 

in banks, railway stations, airports, and other public places as a security control 

system where Closed-Circuit Television (CCTV) cameras are leased to identify 
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individuals. It is also used in other sectors such as education, healthcare, media and 

entertainment, etc., as illustrated in Figure 1.5 [29]. Video Surveillance recordings 

can be used to identify the suspect at the crime scene. Monitoring surveillance 

videos continuously is a very tiring task that requires visual attention and is also 

boring, leading to more opportunities for error. Automated surveillance that uses 

an intelligent system to monitor activities and raise an alarm, when necessary, can 

form an effective security system. In these real-time scenarios, there is a high 

possibility that the captured image has a large pose variation, faces are obscured by 

glasses, clothes, etc., the lighting effect of the image might be dark, the facial 

expression might be different, etc. These are the factors that contribute to the 

deterioration in facial recognition accuracy. Therefore, an effective automated 

facial recognition system that offers high accuracy with minimal computational 

cost is the need of the hour. 

 

Figure 1.5 Applications of FR in Various Sectors 
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1.2 Problem Description 

The reactive Video Surveillance systems wait for the event to occur, and later 

analysis is done. Therefore, there is a need for a proactive automated system that 

offers higher recognition accuracy and faster processing to prevent losses resulting 

from abnormal events. In real-time Video Surveillance systems, face detection and 

recognition play a challenging role due to the presence of various unconstrained 

factors such as pose variation, partial occlusion, illumination, and low resolution. 

Existing deep learning-based FR systems necessitate a substantial amount of 

meticulously cleaned and labeled face images for effective training and feature 

learning. Consequently, the training phase of these FR models demands significant 

computational resources and is time-consuming [26] [30] [31]. Moreover, during 

the operational phase, numerous pre-processing steps are performed on captured 

face images, requiring substantial computing power and time. As a result, these 

approaches are not suitable for real-time applications like Video Surveillance [32]. 

Additionally, existing FR systems are reactive in nature, conducting analysis only 

after an individual has been encountered [33] [34] [35]. Prior research has focused 

either on developing FR models [26] [30] [31] or directly implementing existing 

models into systems [33] [34] [36]. As far as our knowledge extends, there has been 

no comprehensive automated research-oriented FR system proposed to address 

these challenges. 

1.3 Objective 

Analysis and design of a proactive and efficacious Face Recognition system to 

mitigate the effects of factors like pose, partial occlusion, illumination, and low 

resolution that degrade the facial recognition accuracy for Video Surveillance. 

Sub-objectives  
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1. To identify an efficient face detection algorithm. 

2. To propose a Hybrid Ensemble Convolutional Neural Network (HE-CNN) 

model for Face Recognition and analyze the performance thereof. 

3. To develop an automated FR system that does not require human 

intervention for the identification of an individual. 

1.4 Thesis Contribution 

The several noteworthy contributions of the proposed research are summarized 

below. 

1. The proposed modified architecture of the baseline model 

(a) Instead of training the Convolutional Neural Network (CNN) model from 

scratch, we adopted the concept of transfer learning to obtain fine-tuned baseline 

models for addressing the discussed problem. 

(b) The architecture of the baseline models (VGG19, DenseNet169, and ResNet50) 

is enhanced by incorporating Global Average Pooling (GAP) and Global Max 

Pooling (GMP), a Fully Connected (FC) layer, Batch Normalization (BN), and 

dropout in the classification layer. These modifications resulted in the State-of-the-

Art (SOTA) competent results. 

(c) Two-phase training has been implemented, involving the freezing and 

unfreezing of model layers, along with the optimization of hyperparameters. This 

approach significantly enhanced the accuracy of Face Recognition. 

2. A novel optimized HE-CNN model is proposed and implemented that uses the 

average weighting of modified fine-tuned baseline models to improve the 

recognition rate. 

3. In the designed system, the assessment of the Single-Shot Multibox Detector's 

(SSD) [37] performance is done for the face detection module and contrasted with 

the Multitask Cascaded Convolutional Neural Networks (MTCNN) [38] 
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framework, the Haar feature-based cascade classifier [39], and the Local Binary 

Pattern (LBP) feature-based cascade classifier [40] framework. Two widely used 

datasets, Labeled Faces in the Wild (LFW) [41] and Cross-Pose LFW (CPLFW) 

[42], as well as a self-curated collection of mugshots, are used in this study. 

4. The proposed changes in the architecture and the techniques used for 

hyperparameter optimization have been demonstrated using image benchmark 

datasets such as Georgia Tech (GT) face [43], LFW, CPLFW, and self-curated 

dataset, as well as benchmark video dataset such as YouTube Faces (YTF) [44]. 

5. An unprecedented approach is designed to make the system intelligent that 

reduces human intervention. It has two modules: one that predicts crime-prone 

locations and the other that generates alerts. The automated facial recognition 

system has been implemented in criminal recognition to demonstrate the real-time 

application of the presented research. 

6. The images in standard datasets typically contain only a single face per image, 

while real-time scenarios often involve multiple faces in a single image. To address 

this, we also developed a self-curated dataset consisting of mugshots. This dataset 

includes images of 10 criminals collected from freely available sources on the 

Internet. The purpose of this dataset is to showcase the practical application of the 

proposed recognition system in real-time scenarios. The dataset was created 

considering the factors present in the real-time scenario, such as low resolution, 

partial occlusion, lighting, etc. The self-curated dataset is available for research at 

the link provided: https://data.mendeley.com/datasets/226275vfxz/2. 

1.5 Thesis Outline  

The structure of the remaining thesis is organized into six chapters, including 

the introduction chapter. In Chapter 2, a comprehensive exploration of State-of-the-

Art Face Recognition research is undertaken, starting with traditional algorithms 

and progressing to advanced deep learning-based approaches, transfer learning-

https://data.mendeley.com/datasets/226275vfxz/2
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based methods, and ensemble learning-based techniques. The chapter also 

addresses the challenges existing in Face Recognition and discusses standard 

datasets used to evaluate FR algorithms.  

In Chapter 3, both the self-curated mugshot dataset and the selected standard 

datasets are discussed in detail. To emphasize the impact of unconstrained factors, 

datasets captured in both constrained and unconstrained environments are utilized. 

An algorithm for data oversampling is introduced in this chapter as part of an effort 

to ensure that a balanced dataset is used in evaluating the proposed work.  

Chapter 4 introduces a novel method for an automated FR system. Deep 

ensemble transfer learning is used in the proposed system to strike a balance 

between accuracy and computational resources. In the proposed and implemented 

system, face detection is handled by SSD, while Face Recognition is handled by a 

hybrid model. The suggested FR system also includes alert generation to reduce 

human intervention in recognizing individuals. This chapter further elaborates on 

the concept of two-phase learning, which is used to train the proposed 

modified models.   

In Chapter 5, the essential hyperparameters for fine-tuning the model are 

discussed in detail. Furthermore, the suggested architecture's performance is tested 

and compared to existing approaches to illustrate its superiority. The proposed work 

is evaluated using various metrics such as accuracy, precision, recall, error rate, and 

Receiver Operating Characteristic (ROC) curve. In this chapter, an ablation study 

is conducted to evaluate the impact of the suggested modifications to the pre-trained 

models. At the end of the chapter, the execution time analysis of the proposed 

system is discussed.  

Finally, in Chapter 6, the thesis is summarized, conclusions are drawn, and 

future research directions are explored. The diagrammatic representation of the 

thesis outline is given in Figure 1.6. 
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Figure 1.6 The Diagrammatic Representation of the Organization of the Thesis 

1.6 Summary of the Chapter 

This chapter begins with an overview of the intended topic, followed by a 

motivation for the proposed research, then goes on to describe the challenges of the 

study and summarize the contributions carried out by this thesis. Furthermore, a 

thesis outline describes the flow of the proposed research. The next chapter 

elaborates on the existing State-of-the-Art approaches proposed by various 

researchers for face recognition tasks. 
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     CHAPTER-2 

2 LITERATURE STUDY 

Computer Vision (CV), a specialized domain within Artificial Intelligence (AI), 

empowers computers and systems to extract insights from digital images, videos, 

and other visual inputs. Subsequently, these insights are utilized to execute actions 

or formulate predictions. This interdisciplinary field bridges diverse areas of study, 

including computer science (theory, architecture, systems, algorithms), engineering 

(image processing, natural language processing, speech processing, robotics), 

biology (neuroscience), mathematics (machine learning, information retrieval), and 

physics (optics). The key elements of Computer Vision include visual recognition 

tasks such as image classification, object detection, localization, and segmentation. 

As the adoption of AI technologies reshapes numerous industries since the 

inception of machine learning, computer vision emerges as a pivotal player. 

Particularly in the realm of face recognition, Computer Vision provides algorithms 

and methodologies to scrutinize and process visual data embedded in images or 

videos containing human faces. This chapter delves into an intricate exploration of 

face recognition techniques, encompassing conventional, deep learning, transfer 

learning, and ensemble learning approaches. Moreover, it presents a comprehensive 

overview of the contemporary State-of-the-Art in the domain of face recognition. 

2.1 Traditional Algorithms for Face Recognition 

Numerous investigations have been undertaken to explore diverse 

methodologies for face detection, identification, and matching. Traditional 

algorithms for face recognition include Scale Invariant Feature Transform (SIFT) 

[45], Principal Component Analysis (PCA) [10] [46] [47], AdaBoost, Linear 

Discriminant Analysis (LDA), Elastic Bunch Graph Matching (EBGM) [48], 

Fisherface, and Singular Value Decomposition (SVD) [11]. However, these 
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approaches are susceptible to limitations stemming from variations in illumination, 

pose, and expression. Furthermore, their efficacy in recognizing faces is diminished 

in uncontrolled settings. Khan et al. [10] introduced an automatic face recognition 

system employing the PCA eigenface algorithm. Experimental outcomes 

showcased an 86% recognition accuracy within controlled environments and an 

80% recognition accuracy within uncontrolled scenarios. Nonetheless, this system 

encounters challenges in delivering satisfactory outcomes for videos of low 

resolution and considerable pose deviations. In another study [48], a comprehensive 

analysis comparing the AdaBoost, PCA, LDA, and EBGM algorithms for face 

recognition was presented. This comparison highlighted their drawbacks, 

advantages, success rates, and other pertinent factors. Following the evaluation, 

PCA emerged with the highest success rate (85%–95%); however, it exhibited 

limitations when applied to video datasets. It is important to observe that the 

algorithms discussed are primarily well-suited for datasets that are smaller or less 

complex. Abdullah et al. [46] introduced a method for identifying criminals through 

facial recognition. This method employed PCA to identify criminal individuals 

based on their faces. The reported results indicated 80% accuracy in recognition; 

however, additional testing is necessary to validate the proposed approach. In a 

separate study, Dhamija et al. [11] utilized a blend of PCA, Fisherface, and SVD 

techniques for facial recognition. Their proposed system underwent testing on the 

AT&T face dataset, achieving an estimated recognition rate of about 99.5% using 

the leaving-one-out technique and 93.92% using the hold-out approach. Kavitha et 

al. [12] proposed another technique for transforming non-frontal faces into frontal 

perspectives. This was accomplished by performing a series of fitting, mirroring, 

and stretching operations to generate a frontalized facial appearance. Their 

approach was tested on Facial Recognition Technology (FERET), LFW, and Public 

Figures (PUB-FIG) face datasets to demonstrate the accuracy of the suggested 

approach. It can, however, only handle pose variations up to ±22.50. The proposed 

face recognition system by Gao et al. [45] is based on a large number of virtual 
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views and alignment errors. The Lucas Kanade and SIFT algorithms were used in 

this technique. The proposed method performed well on the FERET dataset, 

outperforming conventional face recognition methods by approximately 38%. It is, 

however, limited to position alterations of up to 60 degrees, and recognition 

accuracy decreases beyond 400. Additionally, the time complexity of the proposed 

algorithm is higher compared to other comparative algorithms. Ahonen et al. [40] 

introduced a method using LBP for face representation. The method underwent 

testing on the FERET dataset, yielding a 97% accuracy rate when dealing with 

images exhibiting various facial expressions. However, its performance was 

suboptimal when handling other variables. In a separate study, Kakkar et al. [49] 

crafted a system for recognizing criminals through facial identification. Their 

approach hinged on a Haar feature-based cascade classifier and Local Binary 

Pattern histogram. Meanwhile, Sable et al. [50] introduced an innovative technique 

termed Entropy-based Volume SIFT (EV-SIFT) aimed at recognizing surgically 

altered faces. The system was evaluated for various types of plastic surgeries, and 

different recognition rates were achieved for each surgery type. These traditional 

face recognition algorithms reviewed in Table 2.1 have limitations when 

environmental conditions are not controlled, such as poor lighting, non-occluded 

images, and low-resolution cameras. The emergence of deep learning has overcome 

some of the constraints associated with traditional approaches. 

Table 2.1 A Tabular Representation of Traditional Face Recognition Methods Used in 

Different Studies 

S. 

No. 
Authors Year Dataset 

Algorithm 

Used 

Recognition 

Accuracy 
Research Gaps 

 

 

 

 

1. 

 

Khan et 

al. [10] 
2018 

NCR-IIT 

facial 

database 

& Real-

time video 

stream 

PCA 

Algorithm 
69%  - 86% 

1) PCA exhibited 

limited performance in 

uncontrolled 

environment 2) The 

accuracy of FR is 

pivotal, as the entire 

systems’ success 

hinges on it. 3) Fails to 

yield improved 
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outcomes for low-

resolution video and 

pose variation. 

 

 

 

 

 

 

2. 
Banerjee 

et al. 

[51] 

2018 

Point and 

Shoot 

Face 

Recogniti

on 

Challenge 

(PaSC) 

videos & 

CW 

images, 

CMU 

Multi-PIE 

dataset 

Supervised 

learning, 

Viola Jones, 

Generic 3D 

model 

88.453%- 

97.282% 

1) All the discussed 

frontalization methods 

experienced high 

failure rates beyond 

the 40-degree yaw 

angle. 2) Focused only 

on a pose and 

somewhere on 

illumination and 

expression. 3) 

Supervised learning 

approach is used so it 

requires clean and 

labeled training data. 

 

 

 

 

 

 

3. 

 

Abdullah 

et al. 

[46] 

2017 

Real-time 

video 

stream 

PCA 

Algorithm 
80% 

1) The efficiency of 

PCA diminishes when 

handling video 

datasets. 2) PCA 

exhibits better 

performance when 

applied to frontal 

faces. 3) Other 

relevant factors are not 

considered. 4) No 

dataset used to 

evaluate the 

performance of the 

algorithm.  

 

 

 

 

 

 

4. 
Gao et 

al. [45] 
2015 

FERET Lucas 

Kanade, 

SIFT, Two-

phase 

alignment 

error 

99.521 % 

for ± 15 

degree 

1) The proposed 

approach capable of 

addressing pose 

variations within a 

range of ± 60-degree. 

2) Recognition 

accuracy deteriorates 

significantly when 

surpassing 400. 3) 

Generating multiple 

virtual views for all 

database images is not 

a practical endeavor. 

LFW 
26% for ± 

60 degree 

 

 

5. Huang et 

al. [52] 
2015 

COX Face 

dataset 

Point-to-Set 

Correlation 

Learning 

(PSCL) 

50.961%  - 

53.263% 

1) Unconstrained 

factors such as aging, 

occlusion and plastic 

surgery are not 

considered in the 

proposed dataset. 
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6. Fathima 

et al. 

[53] 

2015 

AT&T, 

MIT-India 

and 

Faces94 

datasets 

Gabor 

wavelet and 

Linear 

Discriminant 

Analysis 

88% - 

94.024% 

1) Does not work well 

for faces with different 

pose distribution. 

 

 

 

7. Lei et al. 

[54] 
2009 

CMU-

MIT face 

dataset 

Modest 

Adaboost, 

Improved 

Independent 

Component 

Analysis, 

Hausdorff 

distance 

95.206% 

1) Experiments are not 

performed to evaluate 

the recognition rate. 2) 

A large number of 

images required to 

train the system for the 

recognition stage. 

 

2.2 Deep Learning-based Approaches for Face Recognition 

This section discusses deep learning-based algorithms developed for face 

recognition. Before that, the next subsections introduce deep learning and explore 

various architectures developed from early to advance deep CNNs. 

2.2.1 Deep Learning 

The concept of deep learning helps to provide higher recognition accuracy for the 

classification models in comparison to traditional approaches. Deep learning is a 

subfield of Artificial Intelligence and Machine Learning (ML) that includes statistical 

analysis techniques that train data recursively in order to provide predictions, as 

depicted in Figure 2.1 [55]. The distinguishing feature of deep learning models is 

their ability to learn and improve automatically through experience, enabling them to 

make predictions on unfamiliar data [56]. Within the framework of Machine 

Learning, the identification of significant features that capture anomalies or patterns 

in the data holds utmost importance. These features were traditionally primarily 

created through human expertise. Nevertheless, models may now learn these 

features on their own though the advancement of machine learning techniques. 

Artificial Neural Networks (ANNs) serve as a widely embraced computational model 

in machine learning, aiming to mimic the learning process of the human brain. Neural 
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networks, also known as perceptrons, have been in existence since the 1940s but have 

gained prominence in the field of artificial intelligence over the past few decades. 

The development of a technique called backpropagation is a key factor propelling 

their prominence in the field of Machine Learning. Backpropagation facilitates the 

ability of neural networks to modify the weights within the hidden layer of neurons 

in accordance with the intended output [57]. 

 

Figure 2. 1 Classification of Artificial Intelligence 

Deep learning represents the advancement of Artificial Neural Networks, 

characterized by the incorporation of multiple hidden layers that enable higher levels 

of abstraction. The introduction of deep layers into the model has significantly 

enhanced the accuracy of task predictions by enabling the system to learn complex 

data [58]. A pivotal role in implementing deep learning-based approaches is played 

by CNNs [59] [60], which consist of convolutional layers, subsampling layers, and 

fully connected layers. The feature learning process involves the convolutional and 

subsampling layers, whereas the fully connected layer is used for classification, as 

illustrated in Figure 2.2. The emergence of CNNs has revolutionized feature learning 

techniques, as they have the ability to learn features automatically instead of relying 

on manual construction. CNNs have witnessed remarkable success in various 

computer vision tasks and are considered a significant breakthrough in machine 
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learning. One notable model, AlexNet, introduced by Krizhevsky et al. [61], brought 

about a paradigm shift in computer vision in 2012. AlexNet's architecture is similar 

to LeNet-5 [62], however it was first created to compete in the ImageNet competition. 

Its triumph in the ImageNet competition effectively demonstrated its efficacy, 

leading to widespread adoption within the computer vision community. Effective 

regularization parameters, data propagation techniques, rectified linear units, and the 

use of Graphics Processing Units (GPUs) to meet computing demands were all 

credited with this success. One of the top ten deep learning achievements in 2013 

was AlexNet. The greatest strength of a CNN lies in its deep architecture which 

enables the extraction of sophisticated features at various levels of abstraction [61] 

[63].  

 

Figure 2.2 The Flow of the Working of CNN 

2.2.1.1 Early Deep CNNs 

The early deep CNNs first emerged in the late 1990s, starting around 1998. A 

CNN, also known as a ConvNet, stands as a distinctive and multi-tiered neural 

network deliberately designed for the task of pattern recognition. Its specialization 

lies in the capability to directly discern visual patterns from pixelated images, often 

requiring minimal to no preliminary data preprocessing. A sizable visual dataset 

created for use in image classification and object detection was made available by 

the ImageNet project [64]. In order to promote the development and assessment of 

cutting-edge algorithms, this project also ran the ImageNet Large Scale Visual 
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Recognition Competition (ILSVRC), an annual software competition [64]. The 

revolutionary CNN architecture LeNet-5 is presented in this section, followed by 

discussions of the leading CNN architectures of the ILSVRC: AlexNet, Network in 

Network (NIN), VGGNet, GoogLeNet, ResNet, and DenseNet. In this thesis, the 

collection of specified CNN architectures is referred to as L-A-N-V-G-R-D. 

a) LeNet-5 (1998): Comparing conventional architecture to traditional neural 

networks has resulted in a series of advancements in image classification. LeNet-5 

[62], the first CNN model released in 1998, had seven layers, only three of which 

were convolutional (C) and one of which was Fully Connected (FC), with a total of 

60,000 parameters. In Figure 2.3, this network is displayed. The output of this 

network is a digit between 0 and 9, which is used to classify and identify 32 x 32-

pixel grayscale handwritten numerals. 

 

Figure 2.3 LeNet-5 Architecture consisting of 7 Layers [62] 

b) AlexNet (2012): Higher-resolution images need to be processed using larger 

convolutional layers. Thus, AlexNet, which had 60 million characteristics in five 

convolution layers and three fully connected layers, is credited with starting the 

background of deep learning [61]. Figure 2.4 depicts the AlexNet architecture. The 

reasonably quick and simple AlexNet is slightly changed into ZF-Net [65]. This 

network performed substantially better than its predecessors [61] [62]. In a 
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conventional classification network, AlexNet has been applied after downsizing the 

input image and applying convolutional and FC layers. The output would then be 

the expected class label for the input image. 

 

Figure 2.4 AlexNet Architecture [61] 

c) NIN (2013): The capacity to distinguish between local patches within the input 

patch was improved by a Network in Network (NIN) design [66]. Three micro 

neural networks, essentially nonlinear function approximators, are stacked to 

generate this model. The Multilayer Perceptron (MLP) is used to create the tiny 

neural networks. As shown in Figure 2.5, the filter size for each layer of the MLP 

structure is 1x1, except for the first layer. Like CNN, the micro-networks are slid 

over the input to produce the feature maps, which are then supplied into the 

following layer. Multiple MLP structures are stacked to provide deep NIN, while 

the classification layer uses Global Average Pooling. 
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Figure 2.5 MLP Structure [66] 

d) VGGNet (2014): This network's primary contribution is to assess correctness 

through deepening the network. This network, which had up to 19 layers and 138 

million parameters, was made more accurate at classifying by using mini batch 

gradient descent with speed and dropout [67]. Six VGGNet configurations have 

been proposed, ranging from 11 weight layers (eight convolution and three fully 

linked layers) to 19 weight layers (with 16 convolution and three fully connected 

layers). The count of filters (depth) in each layer accumulates to 512, originating 

from an initial count of 64 in the first layer and progressively doubling after each 

max-pooling layer. Figure 2.6 depicts the VGGNet-16 design. Due to its extremely 

homogeneous design, VGGNet placed first in the single-object localization test at 

ILSVRC 2014 [64]. 

e) GoogLeNet (2015): The first section of the GoogLeNet design is similar to 

LeNet in Figure 2.3 and AlexNet in Figure 2.4, as shown in Figure 2.7, while the 

block's stack is derived from VGGNet in Figure 2.6. LeNet, AlexNet, and 

VGGNet's stack of FC layers are swapped out for GoogLeNet's worldwide mean 

pooling at the network's end. Google's top-5 error rate was 6.67%, which is quite 

near the level of human performance. It won first place in the ILSVRC 2014's 

classification and detection task [64]. The subsequent adoption of Batch 
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Normalization (BN) speeds up the training process for GoogLeNet [68]. Figure 2.8 

shows the GoogLeNet model with 22 layers. 

 

Figure 2.6 VGGNet-16 Architecture [67] 

 

Figure 2.7 Inception Module Architecture [63] 
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Figure 2.8 22-layer GoogLeNet Architecture [69] 

f) ResNet (2016): Since it is more difficult to train deeper neural networks than 

shallower ones, the development of ResNet marked the start of a new phase in deep 

neural network training efficiency [70]. In order to facilitate training and optimize 

the significantly deeper networks, which produced greater accuracy, a residual 

learning system was developed. Instead of learning unsourced functions, the layers 

were deliberately reformed to learn residual operations concerning the layer inputs. 

The introduction of the ResNet Unit (RU), shown in Figure 2.9, was made to 

address the critical issue [68]. This occurs when adding more layers to a powerful 

deep model causes the training error to increase. By creating the shortcut 

interconnection as an identity mapping, ResNet solved this issue. The depth of the 

residual networks might range from 18, 34, 50, 101, or 152 layers. The most 

complex ResNet is less complex while being eight times larger than VGGNet. This 

network demonstrated easier optimization than VGGNet while achieving an 

increase in object accuracy rate of 28% [71]. In Figure 2.10, the ResNet with a 34-

layer residual is displayed. This network has four building blocks, and each has a 

stack of RU building blocks. 

ResNet-34 consists of 18 RU building components in total. Comparing the 

VGGNet to AlexNet, which has nearly three times as few parameters, involves 
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much processing. Compared to AlexNet, which has over 60 million parameters, 

GoogleLeNet's Inception architecture has about 7 million parameters, which is a 9-

times reduction. The ability to transport gradients back across all levels in an 

efficient manner is a worry, though, considering the relatively enormous depth of 

Google Net's 22 layers. Because shorter networks did so well at this task, we can 

conclude that the features generated by the middle layers of the network should be 

very differentiable. This could be used by connecting additional classifiers to the 

intermediate levels [71]. A deeper system would produce the same classification 

error as its shallower counterpart using ResNet's shortcut identity mappings [68]. 

By employing this method, networks containing the Inception module can achieve 

comparable accuracy while being less expensive [71]. 

 

Figure 2.9 A ResNet Unit (RU) [70] 

g) DenseNet (2017): The deep learning architecture named DenseNet, or "Densely 

Connected Convolutional Networks," was developed for image classification and 

other computer vision problems. "Densely Connected Convolutional Networks," 

proposed by Huang et al. [72], first discussed it in their 2017 publication. DenseNet 

introduces a special connectivity design among layers to address the issue of 

disappearing gradients and information flow in deep neural networks. Each layer 
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in a dense network is directly connected to every layer above it, facilitating 

information flow and gradients across the network. An architecture with excellent 

parameter efficiency is produced by this dense connectivity. DenseNet is broken up 

into a number of dense blocks. The primary innovation within each dense block is 

that every layer obtains feature maps from all the preceding layers within the same 

block. Each dense block is made up of several convolutional layers. This 

encourages feature reuse, enabling the network to learn more condensed and 

representative features, improving the performance of the network as a whole. The 

architecture shown in Figure 2.11 has a variety of advantages, such as enhanced 

gradient flow, feature reuse, a decrease in the number of parameters, and overfitting 

mitigation. DenseNet models are a popular option in the fields of deep learning and 

computer vision because of their State-of-the-Art performance on numerous 

benchmark datasets. 

 

Figure 2.10 A 32-layer ResNet Architecture [70] 

The detailed discussion of the pre-trained models is done to show the 

significance of their use in different applications. The next sub-section provides a 

detailed overview of the various applications of these pre-trained models. We 
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utilized these pre-trained models in the proposed and implemented system by 

incorporating some modifications.  

  

Figure 2.11 The Architecture of DenseNet [73] 

2.2.1.2 Advanced Deep CNNs 

More sophisticated Deep CNN (DCNN) architectures have adapted the basic 

L-A-N-V-G-R-D networks for various purposes. Following is a list of advanced 

DCNNs used in various tasks such as object detection, classification, and 

segmentation. An illustration of the discussed tasks is given in Figure 2.12. 

a) Object Detection 

In the field of Computer Vision, object detection refers to the task of 

simultaneously identifying and precisely locating objects within an image or video 

frame. Its core objective is not only finding the object but also identifying the 

correct position of the object, often visualized through bounding boxes encircling 

the detected objects. It is used in various computer vision tasks such as image and 

video analysis, surveillance infrastructure, facial recognition, etc. Many researchers 

have proposed various deep learning techniques for object detection. Kuznetsova 

et al. [74] proposed RCNN, a region-based technique using CNN characteristics. 

The ConvNet structure of AlexNet [61] is swapped out for a 16-layer GoogLeNet 
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[71] model to build this architecture, resulting in a straightforward and scalable 

object detection technique. To accurately identify human faces, Taigman et al. [31] 

suggested the nine-layer DeepFace CNN model. DeepID-Net proposed by Ouyang 

et al. [75] tackles a specialized identification problem for distorted objects. To aid 

in understanding the distortion of object pieces, this framework provides a 

deformation-limited pooling layer. Although this method is based on Recurrent 

CNN (RCNN), it is significantly more complicated because the deformation is 

specified as the visual features at many semantic levels. Dai et al. [76] published a 

subsequent method for modeling transformation matrices. Liu et al. [37] proposed 

the SSD object identification model, which included predictions from several 

feature maps with different resolutions to recognize objects of various sizes. SSD 

is much faster than RCNN because it eliminates proposal development and 

integrates coordinate regression and region classification into a single network. 

Wang et al. [77] recommended the Fully Convolutional Network-based Tracker 

(FCNT) to address the visual tracking problem. FCNT is a tracker network built on 

FCN that focuses on high-level features to recognize the semantic class of the object 

and low-level characteristics to acquire more exclusionary data to more effectively 

distinguish the same appearance from the background. 

b) Classification  

Classification is a fundamental task in both the fields of Machine Learning and 

data analysis. It involves the systematic arrangement of data points or objects into 

predefined groups or categories, primarily determined by the assessment of their 

inherent attributes or characteristics. Le et al. [78] suggested Deeply-Supervised 

Nets (DSN) to give a close, integrated look at the hidden layers instead of only 

supervising the output nodes and sending this information back to earlier levels. 

They applied the auxiliary classifier to each buried layer, which was regarded as an 

additional regularizer. However, Szegedy et al. [71] had already introduced the 

importance of the auxiliary classifiers. A highly difficult job of fine-grained 
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recognition to differentiate among visually very similar things, such as kinds of 

birds, breeds of dogs, or types of airplanes, was handled by the Deep Convolutional 

Activation Feature (DeCAF) network presented by Donahue et al. [79]. 

Classification tasks like fine-grained recognition have substantial intra-class and 

low inter-class variation [79] [80]. Although introducing a residual learning 

framework with 152 levels made it easier to train deeper networks, the high 

computing cost of deeper neural networks still makes them difficult to deploy. At 

that point, the two main issues that need to be handled are the disappearing gradient 

and model size. Using a feed-forward ResNet technique, Huang et al. [72] 

addressed the gradient vanishing issue by connecting every layer to every other. 

Their model, DenseNets, also decreased the number of variables. Both ResNet and 

DenseNet's designs fall under the categories of pre-activation and cross-layer 

connections. A batch normalization layer follows the convolutional layer in these 

networks, and the output of one layer can be utilized as the input for numerous 

following layers. These two well-known deep learning networks were developed to 

recognize various classes, including the 1000 classes in ImageNet. 

c) Pixel Classification  

Pixel classification, also known as segmentation, is the process of assigning 

labels to each pixel of an image that helps to segment the image into regions. 

Girshick et al. [81] suggested an object recognition and semantic segmentation 

network by fusing several low-level image data points with high-level context. This 

network uses bottom-up region recommendations in conjunction with CNNs to 

localize objects and segment them. Another deep neural network, dubbed DeepLab, 

which enhances the localization of object boundaries, also addresses semantic 

segmentation [82]. This model incorporates two new elements: the Atrous Spatial 

Pyramid Pooling (ASPP) module to partition the objects at various scales, and the 

atrous convolution, a potent tool for controlling the resolution in dense prediction. 

The Full Resolution Residual Networks (FRNN) model, another DCNN-based 
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model for semantic segmentation, improves localization accuracy while offering 

remarkable recognition performance [83]. 

Most DCNNs have excessive parameters and need millions or even billions of 

starting point operations. Therefore, deep network designers' primary concerns are 

storage and computing capacity. One of the primary drivers for reducing the 

number of these networks' parameters is to increase the effectiveness of their 

deployment on mobile apps like MobileNet [84] or their training in Internet-scale 

clusters, which results in lower computing costs and storage requirements. An 

overview of dimension reduction methods used with deep networks is provided in 

the next sub-section. 

2.2.1.3 Dimensionally Reduced Deep CNNs 

The deep networks have dramatically increased accuracy, but there is a 

significant processing overhead due to the deep networks' enormous number of 

parameters. Implementing a deep network on hardware systems with constrained 

processing resources, such as mobile phones, is challenging because of the high 

storage requirements and computationally expensive floating-point matrix 

multiplications. Considering ways to lower the memory and computational costs of 

deep network topologies is crucial. In order to speed up the testing phase of the 

large-scale training network, Denton et al. [85] devised a linear compression 

algorithm. This method cuts the test time two-fold by taking advantage of CNNs' 

linear nature.  

The RCNN object detection network requires a lot of computing power. Two 

improved versions of this network are being made to make it work better. The first 

one, called fast-RCNN, finds the Region of Interest (RoI) [86], and the second one, 

also called fast-RCNN, builds the Region Proposal Networks (RPNs) on top of the 

RCNN convolutional feature mappings [87]. FitNets is a framework that Adriana 

et al. [88] created to condense a wide, deep network with many parameters into a 
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deeper, thinner network with fewer parameters. The compressed network is trained 

using intermediate-level cues from the larger network. FitNets has shown that 

deeper and narrower networks can generalize and operate more quickly than wider 

ones. Han et al. [89] proposed a parameter reduction technique to reduce 

computational time and memory consumption in CNNs by deleting extraneous 

links in the first round of learning and then fine-tuning only the critical connections 

in the second. This method maintained the accuracy of AlexNet, which had nine 

times fewer parameters, and VGG-16, which had 13 times fewer parameters. 

ThiNet [90] used filter level pruning as another optimization strategy by removing 

the less significant filters. Instead of using the statistics from the current layer, 

ThiNet prunes the filters depending on the statistics from the next layer. It reduced 

the VGGNet-16 model's size by a factor of 16 while just slightly decreasing 

accuracy. SqueezeNet, proposed by Iandola et al. [91], is a compressed version of 

AlexNet that keeps accuracy while having 50 times fewer parameters. The re-

module, which this technique introduced, has two different sorts of layers: the 

compress convolution and the expansion. In a different architecture known as Deep 

Fried Convnets, the fully connected layers are re-parametrized using an adaptive 

Fastfood transform algorithm because they contain high and over 90% of the CNN 

parameters [92].  

 

Figure 2.12 Applications of Advanced Deep CNNs 
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2.2.1.4 Existing State-of-the-Art Approaches for Face Recognition using Deep 

Learning  

In recent times, Deep Convolutional Neural Networks (CNNs) have 

demonstrated remarkable achievements across a range of computer vision tasks, 

particularly in the realm of object detection. These deep CNN models have proven 

their ability to effectively capture diverse variations present in large datasets and 

learn discriminative nonlinear feature representations. Consequently, they have 

emerged as powerful tools for face recognition (FR) applications by directly 

learning effective feature representations from face images [26] [93] [94]. For 

instance, DeepID, DeepID2, and DeepID2+ were introduced in [27] [95] [96] to 

acquire a set of high-level discriminative feature representations. DeepID [95] is 

trained by employing a collection of small CNNs and achieves an impressive 

recognition accuracy of 97.45%. Each CNN is individually fed with specific facial 

image regions such as the eyes, nose, and mouth, and the learned features are 

combined to form a powerful model. Expanding on this research, subsequent 

studies [27] [96] amplified the feature dimension of the last hidden layer and 

leveraged the hierarchical and non-linear characteristics of the convolutional layers. 

This approach facilitated the acquisition of hierarchical and nonlinear feature 

representations, intended to better differentiate between different individuals by 

extracting unique traits from each identity while minimizing variations within the 

same individual. In contrast to the DeepID series, Microsoft DeepFace [31] 

integrates precise facial alignment to extract a resilient facial representation through 

a 9-layer deep CNN. Developed by Facebook, DeepFace [31] achieved a 

remarkable recognition accuracy of 97.35% in face recognition, comparable to 

human-level performance. The model consists of over 120 million parameters and 

is trained on a dataset of 4.4 million images belonging to 4000 identities. Training 

such a model requires several days and highly computational systems. In an 

alternative investigation [97], the emphasis shifts from individual faces to the 
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concurrent extraction of high-level facial similarity attributes from face pairs. This 

strategy entails employing numerous deep CNNs meticulously tailored for face 

verification tasks. Likewise, in the context of Single Image of Person (SIP) 

challenges, recent studies [98] [99] [100] adopted a loss function based on triplets 

to acquire robust facial embedding. The goal of this loss function is to distinguish 

between pairs that are positive and match the same facial regions of interest (ROIs) 

and pairs that are negative and match distinct face ROIs. An alternative approach 

presented in [101] involves optimizing the triplet loss to acquire a robust facial 

representation. This optimization is achieved through a streamlined and rapid 

Cross-Correlation Matching CNN (CCM-CNN). Autoencoder neural networks 

offer another avenue to extract deterministic nonlinear feature maps that are 

resilient to various factors affecting facial images, such as lighting, expression, and 

poses [102] [103]. The autoencoder architecture comprises encoder and decoder 

components, wherein the encoder converts input data into latent nodes, while the 

decoder reconstitutes these latent nodes back into the initial input data domain. The 

goal is to minimize the reconstruction error [102]. Inspired by [104], several 

autoencoder networks have been suggested to address the mentioned abnormalities 

in facial images [102] [105] [106]. These networks treat faces with different 

variations as noisy images and aim to address lighting, pose, and other factors. The 

authors in [106], describes an investigation using a CNN based on facial 

components to convert faces with different lighting and poses into frontal-view 

faces. It accomplishes this by utilizing pose-invariant features from the final hidden 

layer as facial representations. Several deep architectures have also been 

introduced, and these architectures employ multitasking learning to rotate faces 

with arbitrary poses and varying lighting conditions into target pose faces [107] 

[108]. Furthermore, the comprehensive architecture presented in [109] encodes a 

desired attribute, merging it with the input image to generate target images that 

retain similarity to the input image while integrating changes in visual attributes 

(e.g., lighting, facial appearance, or pose) while keeping other aspects of the face 
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unaltered. In addition, a supervised deep architecture known as FlowNet [110] 

tackles the estimation of optical flow by precisely predicting flows through the 

correlation of feature vectors derived from pairs of images located at different 

positions. In the context of Single Image of Person (SIP) scenarios, a deep 

supervised autoencoder proposed in [101] maps non-frontal faces with various 

complicating circumstances to the canonical face, a frontal face with neutral 

expression and normal lighting, of the same person in order to learn a robust face 

representation. However, due to their computational intricacies and the distinctions 

between static images and video frames, these methods may not be optimally suited 

for S2V FR tasks. To overcome these challenges and address the limitations of 

domain matching, researchers proposed a solution called the supervised 

autoencoder-based Canonical Face Representation CNN (CFR-CNN) in [102]. 

This methodology forms the foundational framework for a S2V FR system that 

centers around domain alignment by the reconstruction of frontal faces from 

specific video Regions of Interest (ROIs). To facilitate the matching of input 

probes, a separate, fully connected network was trained as a classifier. The 

development of an accurate depth model necessitates the simultaneous 

consideration of both static images and videos during network training and 

optimization. Furthermore, to address the variations inherent in the Single Image 

of Person (SIP) context, a supervised autoencoder was introduced. This 

autoencoder maps diverse facial variations to a canonical representation of a single 

individual's face [102]. Advances in frontal view synthesis and pose-invariant 

representation acquisition through an adversarial process have led to the 

development of Generative Adversarial Networks (GANs) [111] [112]. For 

example, a two-path GAN simultaneously manages the overall facial structure and 

the transformation of local intricacies. However, these methodologies require 

landmark detection and may not comprehensively accommodate variations such as 

blurring and scale changes (due to subjects' distance from surveillance cameras), 

thereby making them less suited for video-oriented face recognition applications. 
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Other face recognition algorithms rooted in deep learning, like Deep Face 

Recognition [97], have demonstrated impressive achievements. For instance, they 

achieved a recognition accuracy of 98.95% on the Labeled Faces in the Wild (LFW) 

dataset and 97.3% on the YouTube Faces (YTF) dataset. In [113], a robust CNN 

was trained using a combination of softmax loss and center loss to extract deep 

features that improve both between-class variability and within-class compactness, 

which are crucial for accurate face recognition. The resulting model achieved 

remarkable recognition accuracy rates of 99.28% on the LFW dataset and 94.9% 

on the YTF dataset. 

Training a DCNN from scratch requires a substantial amount of training data, 

making it challenging to achieve proper model convergence, especially in scenarios 

where privacy is a primary concern. To address data scarcity and overfitting issues, 

a technique called data augmentation is employed, entails generating new data by 

applying small adjustments to the current dataset, including flips, rotations, 

mirroring, translations, etc. [114]. Data augmentation helps mitigate the shortage 

of data and improves the generalization capability of the model. Retraining a CNN 

from another network with pre-trained settings is a promising additional strategy to 

address data scarcity [55]. Modern image classification networks that have been 

trained on millions of photos from a particular domain are called pre-trained CNNs. 

They can be used for many domains of interest after undergoing several weeks of 

training across several servers. This approach has proven to be highly valuable for 

researchers facing resource constraints, as it allows them to leverage the knowledge 

and features extracted by these large pre-trained models for their specific area of 

interest. Researchers can achieve optimal performance for their application based 

on the available data, providing a practical and effective solution by fine-tuning an 

existing model.  
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2.2.2 Techniques to Optimize Deep Learning Models 

To enhance the efficiency of deep learning-based algorithms, the subsequent 

approaches can be implemented to mitigate the model’s training time [115].  

a) Backpropagation: Utilizing backpropagation techniques is an effective way to 

compute the gradient function during each iteration. This approach within deep 

learning employs gradient-based methods to address optimization challenges [116]. 

b) Stochastic Gradient Descent (SGD): It efficiently locates the optimal 

minimum through the utilization of convex functions by disregarding local minima. 

The determination of the optimal minimum across diverse trajectories is influenced 

by parameters such as step size, learning rate, and activation function values [117]. 

The mathematical equation for SGD to update the model’s parameter is given in 

equation (2.1). 

𝜃𝑖+1 =  𝜃𝑖 −  𝜂∇J (𝜃𝑖;  𝑥(𝑖), 𝑦(𝑖))                            (2.1) 

Here, 𝜃𝑖 represents the model’s parameters at iteration𝑖, 𝜂 is the learning rate, 

and ∇J (𝜃𝑖;  𝑥(𝑖), 𝑦(𝑖)) is the gradient of the loss function J. 

c) Learning Rate Decay: Modifying the learning rate leads to a reduction in the 

training time of gradient descent algorithms while concurrently enhancing the 

model's overall performance. This approach finds extensive application due to its 

capacity to effect substantial changes during the initial training stages, subsequently 

gradually diminishing the learning rate. Moreover, this technique enables fine-

tuning of weights in subsequent iterations and is mathematically represented by 

equation (2.2) [118]. 

                                                   𝑘 = 𝑖 ×
1

1+𝑑× 
𝑘

𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒

                                       (2.2) 
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Here, 𝑘 is the learning rate, 𝑖 is the initial learning rate at the beginning of 

training the mode, 𝑑 is the decay rate at which the learning rate decreases, and step 

size is the number of epochs before each decay. 

d) Max-Pooling: Across non-overlapping segments of the input layer, a pre-

configured filter is employed to extract maximum values and generate the resulting 

output. The application of the max-pooling technique also brings about a reduction 

in computational expenses associated with learning multiple parameters [66] [119] 

and is mathematically represented as given in equation (2.3). 

                                                          𝑃 = 𝑂𝑚𝑎𝑥
𝑛,𝑛 (𝐹)                                                     (2.3) 

Here, 𝐹 is the input feature map of size 𝑛 × 𝑛 obtained from the previous 

convolutional layer.  

e) Dropout: Tailored for the challenge of neural network overfitting, the dropout 

technique employs a strategy of randomly omitting units and their connections 

throughout the training phase. For a single neuron in a neural network layer, the 

output 𝜌 after dropout is applied can be calculated using equation (2.4). This 

technique serves as an improved regularization approach, effectively curbing 

overfitting within neural networks and ameliorating generalization error [120]. In 

the realm of deep learning, this method garners superior results for supervised 

learning tasks [121]. 

𝜌 =  
1

1−𝑝
. 𝑥. 𝑑                                           (2.4) 

Here,  𝑥 is the output of the neuron before applying dropout, 𝑑 is the binary 

dropout mask obtained from the Bernoulli distribution with probability 𝑝.               

f) Batch Normalization: Batch normalization reduces covariate shift, which 

increases the learning rate of deep neural networks. During the training process, for 

each small batch, this method normalizes the input layer as the weights are adjusted. 

Enhanced network stability is achieved through the normalization of output from 
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the final activation layer. Furthermore, batch normalization methodologies 

contribute to improved learning rates and a reduction in the required training epochs 

[122]. 

g) Transfer Learning: In transfer learning, a model initially trained for a particular 

task is adapted to undergo training for a comparable task. The knowledge acquired 

from addressing one challenge can be efficiently utilized to tackle another related 

issue. This process expedites advancements and enhances performance when 

addressing the second related task [24]. 

h) Ensemble Learning: In Machine Learning, ensemble techniques combine 

several models or classifiers to generate an ideal model that produces precise 

predictions for the intended result. Ensemble learning is employed to enhance 

recognition accuracy by averaging the weights of multiple deep learning models 

[123].  

Based upon the aforementioned techniques for optimizing deep learning 

models, a comparison of their respective advantages and disadvantages is presented 

in Table 2.2. 

Table 2.2 Pros and Cons of Optimization Techniques 

S. No. Technique Description Pros Cons 

1. 
Back 

Propagation 

Used in the 

optimization problems 

Used to 

calculate the 

gradient 

Susceptible to the 

effects of noisy data 

2. 

Stochastic 

Gradient 

Descent 

Locate optimal minima 

in optimization 

problems 

Prevents getting 

into local 

minima 

Convergence time is 

large, demanding 

substantial 

computational 

resources 

3. 
Learning Rate 

Decay 

Reduce the learning 

rate gradually 

Enhancing the 

performance of 

the model helps 

reduce training 

time 

Demanding 

significant 

computational 

resources 
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4. Max-pooling 

Downsampling 

technique for feature 

extraction 

Reduces 

dimensionality 

and 

computational 

overhead 

Considers only the 

maximum value of 

the region of an 

image, which may 

lead to an 

unacceptable result 

5. Dropout 

Random deactivation 

of neurons during 

training 

Prevents 

overfitting 

Increases the training 

time required for the 

model to converge 

6. 
Batch 

Normalization 

Nomalizing the 

activations of a layer 

within a mini-batch of 

data 

Reduction in 

covariate shift, 

stable and faster 

convergence, 

and improved 

generalization 

Increases 

implementation 

complexity and 

slows down the 

training of the model 

7. 
Transfer 

learning 

Utilization of the 

knowledge of first 

model to resolve 

another problem  

Handles data 

scarcity, 

improves 

performance of 

the model, and 

prevents 

overfitting 

Limited flexibility 

(i.e., can work with 

similar types of 

problems) 

8. 
Ensemble 

learning 

Prediction of each 

model is averaged to 

get the final prediction 

Improves 

recognition 

accuracy 

Computational 

overhead during 

training 

 

2.2.3 Deep Learning Framework 

Deep learning frameworks facilitate the expedited design of neural networks by 

obviating the need for delving into the intricacies of underlying algorithms. 

Typically, each framework is tailored to address specific problem statements [124]. 

The subsequent table, Table 2.3, provides a succinct overview of several deep 

learning frameworks.  

a) Fast.ai: Built on PyTorch, the user-friendly, open-source fast.ai deep learning 

library places a strong emphasis on simplicity and effectiveness. It offers a high-

level API that makes data augmentation, transfer learning, and model training 

simpler. Fastai promotes data comprehension and preprocessing with a focus on 
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organized deep learning. For quicker convergence, it incorporates cutting-edge 

methods like learning rate annealing and progressive resizing. Through the use of 

visualization tools, the library facilitates model interpretation. It encourages 

community cooperation, provides courses, and has a wealth of documentation. Due 

to its user-friendly design, it is particularly beneficial for beginners exploring the 

deep learning discipline [125]. 

b) PyTorch: It serves the dual purpose of constructing deep neural networks and 

performing tensor computations. As a Python-based package, PyTorch offers 

tensor computation capabilities and a framework for generating computational 

graphs. 

c) Keras: Built atop TensorFlow, the Keras Application Programming Interface 

(API) is coded in Python. This interface facilitates rapid experimentation and 

extends support to CNN as well as Recurrent Neural Networks (RNN). It provides 

the same deep learning model deployment capabilities on CPUs and GPUs as 

TensorFlow.  

d) TensorFlow: TensorFlow offers compatibility with a range of modern 

programming languages, including C++, Python, and R. This framework enables 

the seamless deployment of deep learning models on both Central Processing Units 

(CPUs) and Graphics Processing Units (GPUs), and was developed by Google 

Brain. 

e) Deeplearning4j: Implemented in Java, Deeplearning4j exhibits superior 

efficiency compared to Python. Utilizing the ND4J tensor library, it empowers the 

manipulation of multi-dimensional arrays or tensors. This framework is compatible 

with both CPUs and GPUs. Deeplearning4j seamlessly handles diverse data 

formats, including images, CSV, and plaintext. 

f) Caffe: Caffe, developed by Yangqing Jia, is an open-source framework. What 

distinguishes Caffe from other frameworks is its rapid processing speed and 
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proficiency in learning features from images. Pre-trained models are made available 

through the Caffe Model Zoo framework, which makes the solution of various 

problems easy. 

Table 2.3 Comparison of Deep Learning Framework 

S. No  
Deep Learning 

Framework 

Release 

Year 

Written in 

Language  

CUDA 

Supported  

Pre-trained 

Model 

1. Fast.ai 2018 Python Y Y 

2. Pytorch 2016 C, Python Y Y 

3. Keras 2015 Python Y Y 

4. TensorFlow 2015 C++, Python Y Y 

5. Deeplearning4j 2014 C++, JAVA Y Y 

6. Caffe 2013 C++ Y Y 

(*Y=Yes) 

2.3 Transfer Learning or Domain Adaptation-based Techniques for Face 

Recognition 

Transfer learning can be employed to enhance classification performance by 

transferring knowledge from a domain that has ample unlabeled data to a domain 

with limited labeled data. This approach is useful when there are differences in data 

distribution or feature spaces between the training and test datasets. In scenarios 

where collecting and labeling new data can be costly and time-consuming, transfer 

learning offers an attractive strategy compared to traditional Machine Learning 

approaches [126]. Transfer learning involves utilizing a pre-trained model as a 

foundation for a new machine learning task, leveraging the knowledge gained 

during the initial training to improve learning and performance on a related task. 

This approach is particularly beneficial when the new task has concise annotations 

or the data distribution differs from the original task. By reusing the pre-trained 

model, transfer learning saves time and computational resources while enhancing 

accuracy and generalization [23] [127]. Essentially, the investigation of various 

domains, tasks, and distributions between the training and testing stages is made 

possible by transfer learning. In transfer learning, the importance of the target task 
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takes precedence over the source task since the model is fine-tuned for the target 

task [127]. Transfer learning can be classified into two settings: (1) inductive and 

(2) transductive, as defined by equations (2.5) and (2.6). Inductive transfer learning 

uses distinct target and source tasks, with some labeled data available in the target 

domain.  Conversely, transductive transfer learning addresses distinct source and 

destination domains while preserving the same task. In transductive transfer 

learning, labeled data from the source domain and unlabeled data from the target 

domain must be used to adjust the learning function, as is the case in Domain 

Adaptation (DA) [127]. The scarcity of datasets, especially in scenarios where 

privacy is a significant concern, has driven the application of transfer learning 

techniques by researchers [24]. For the Single Image of Person (SIP) problem, a 

discriminative transfer learning approach has been proposed. In this approach, a 

generic training set (source domain) is used to learn a feature projection that is then 

transferred to a single-sample gallery set (target domain) through discriminant 

analysis. This approach aims to minimize the differences between the source and 

target domains and incorporates sparsity regularization to enhance robustness 

against outliers and noise [128]. Alhanaee et al. [129] used deep transfer learning 

and pre-trained models to figure out the accuracy of their dataset's detection in the 

context of face recognition-based intelligent attendance systems. However, these 

State-of-the-Art approaches have limitations in that they were evaluated on 

fundamental datasets that contain only a small number of uncontrolled factors. 

Inductive transfer learning 

if 𝑆𝐷  ≠ 𝑇𝐷 𝑜𝑟 𝐿𝑠 ≠ 𝐿𝑡,                                      (2.5) 

It improves the learning of 𝑓(. ) in 𝑇𝐷 by applying the knowledge in 𝑆𝐷 𝑎𝑛𝑑 𝐿𝑠, 

where 𝐿𝑠  ≠ 𝐿𝑡                                                                                                                                                                                                                                                                                

Transductive transfer learning 

if 𝑆𝐷  ≠ 𝑇𝐷 𝑜𝑟 𝐿𝑠 = 𝐿𝑡,                                       (2.6) 
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It improves the learning of 𝑓(. ) in 𝑇𝐷 by applying the knowledge in 𝑆𝐷 𝑎𝑛𝑑 𝐿𝑠, 

where 𝐿𝑠 = 𝐿𝑡                                                                                                                                                                                                                                                              

Here, 𝑆𝐷  is the source domain, and 𝐿𝑠 is the learning task of the source domain, 

𝑇𝐷 represents the target domain, and 𝐿𝑡 signifies the learning task within the target 

domain, the functions 𝑓(. ) serves as the predictive function. 

2.4 Ensemble Learning-based Techniques for Face Recognition 

Ensemble techniques within the realm of machine learning involve the 

amalgamation of multiple models or classifiers to create an optimal composite 

model that delivers accurate predictions for the intended outcomes. The main idea 

behind ensemble models is to use the best parts of different learning algorithms at 

the same time. Compared to single models, this lets ensemble models make better 

predictions. The precision of a classifier is inherently linked to the quality of 

features extracted or learned from input data, such as images. Nevertheless, through 

the fusion of numerous classifiers and the amalgamation of their outcomes, further 

refinement of accuracy becomes feasible. Ensemble classification systems have 

garnered considerable attention across various domains, encompassing fields like 

face recognition [130], geospatial land classification [131], video-based face 

recognition systems [132], medical image segmentation [133], and wind power 

forecasting [134]. These models exhibit heightened accuracy by effectively 

mitigating overfitting concerns and curtailing bias and variance errors in 

comparison to individual classifiers. The value of ensemble models is underscored 

by their triumphant application in renowned machine learning competitions, 

exemplified by the likes of the Netflix challenge [135], the Knowledge Discovery 

in Databases (KDD) Cup 2009, and Kaggle, where ensemble-based models 

clinched top-ranking accuracy scores. 

The performance of the classifier is greatly increased by the introduction of 

multi-classifier-based systems, in which the output of separate base classifiers is 
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combined [100] [132] [136]. Pattern recognition tasks with sparse and uneven 

training data are especially well-suited for ensemble approaches. Ensemble 

techniques' main concept is to create a variety of classifiers from the original data 

and combine them to get predictions that are better than those of any one basic 

classifier [137] [138]. Numerous studies have demonstrated that ensemble methods 

bolster the resilience and accuracy of classification systems [137] [138]. Key 

considerations in ensemble-based systems include the accuracy and diversity of the 

classifiers within the ensemble [139] [140]. While accurate classifiers are desirable, 

it is also crucial for the classifiers to be distinct from each other. Selecting the best 

classifier from the ensemble should not solely rely on training data accuracy. It is 

essential to incorporate diversity among the classifiers in the ensemble to ensure 

effectiveness. This can be achieved through various approaches, as outlined below 

[123]: 

• Using same classification algorithm with different instantiation or different    

hyper-parameter settings. 

• Using different classification algorithms for ensemble system. 

• Using different feature sets: 

o Random selection 

o Feature selection 

• Using different training sets: 

o Bagging 

o Boosting 

o Stacking 

a) Bagging or Bootstrap Aggregating: An ensemble technique widely 

acknowledged in the field involves using a non-hybrid classifier, applying the same 

classification algorithm with various instantiations or hyperparameter settings to 

create an ensemble model. Bagging, another name for bootstrap aggregation, is an 

early ensemble-based method that is simple to understand. It operates by training 
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multiple models using subsets of randomly chosen datasets from the original 

training set with replacement. A majority decision among the individual classifiers 

determines the ensemble's prediction. Figure 2.13 illustrates the process flow of the 

bagging technique. There are several variations of this algorithm aimed at 

enhancing the model’s performance.  

 

Figure 2.13 Parallel Execution of Bagging Process 

b) Boosting: A variant of the bagging technique known as boosting is employed to 

enhance the classification model by sequentially transforming weak learners into 

strong learners, with each learner attempting to correct its predecessor. The 

fundamental distinction between bagging and boosting lies in their training 

approaches. In boosting, the architecture of the current model is dependent on the 

performance of earlier classifiers, but in bagging, each model is built independently 

during a parallel training period. Boosting is a sequential procedure in which the 

data is first given similar weights, and these weights are then redistributed 

following each training phase. This redistribution allows subsequent learners to 
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place greater emphasis on misclassified cases, which are now assigned higher 

weights. Figure 2.14 illustrates this process. 

 

Figure 2.14 The Flow of the Execution of the Boosting Process 

c) Stacked Ensembles: Stacking is a multi-layer learning technique in which base 

learners make up the first layer while lower-level meta-learners then use the base 

learners' outputs to figure out the optimal set of first-level models. The concept of 

the Super Learner (SL) was initially introduced in 1992 [141], and its 

implementation with enhanced performance was demonstrated in 2007 [142], 

highlighting the effectiveness of stacked ensembles in creating an optimal learning 

model. Random Forest (RF) is a well-known machine learning algorithm that uses 

the bagging technique. As Figure 2.15 illustrates, RF combines a collection of weak 

learners, such decision trees, to build a single powerful learner.  
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Figure 2.15 The Flow of the Execution of the Stacking Process 

2.4.1 Existing State-of-the-Art Approaches for Face Recognition Using 

Ensemble Learning  

A Convolutional Neural Networks (CNN)-based framework proposed by Ding 

et al. [132] addressed the challenges in video-based facial recognition. They 

introduced the Trunk-Branch Ensemble CNN (TBE-CNN) model to handle pose 

and occlusion variations. The TBE-CNN was trained using the Mean Distance 

Regularized Triplet Loss (MDR-TL) function. The proposed method was evaluated 

on multiple video datasets, including COX Face, PaSC, and YouTube Faces. 

Impressive recognition accuracies were achieved, such as approximately 95% on 

the YouTube Faces dataset, 96% on the PaSC dataset, and 99.33% accuracy for 

V2V, 98.96% for V2S, and 95.74% for S2V on the COX dataset. Their approach 

secured first place in the BTAS 2016 Video Person Recognition Evaluation. The 
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proposed approach effectively addressed challenges such as blur, partial occlusion, 

and pose variations. Tang et al. [136] proposed an ensemble model combining CNN 

and Local Binary Pattern (LBP) for face recognition. LBP was used to extract 

texture-related features from the face, and ten convolutional neural networks with 

five different network structures were employed to extract features and obtain 

classification results in the fully connected layer. The face recognition result was 

obtained using parallel ensemble learning with majority voting. In another study 

[97], an ensemble of CNN models was trained using holistic facial images and 

multiple overlapping and non-overlapping visual fields to handle pose and partial 

occlusion variations. Fusion of these models was achieved through feature chaining 

to construct over-complete and compact representations. However, specialized 

CNN models like TBE-CNN [132] and HaarNet [100] can enhance robustness to 

facial appearance variations at the expense of increased computational complexity. 

In these models, complicated and asymmetric face traits are captured by branch 

networks, and the root network captures the overall facial look (holistic 

representation). For example, TBE-CNN uses face landmarks, and HaarNet uses 

three branching networks based on Haar-like features. However, these complex 

CNN models may not be suitable for real-time face recognition applications [143]. 

Therefore, there is a need for a simple ensemble model that can provide high 

accuracy with fewer computations.  

2.5 Challenging Areas of Face Recognition 

Face recognition from images and videos presents significant challenges, and 

extensive research has been conducted to achieve high precision. However, 

satisfactory results are yet to be attained due to various factors that affect the 

performance of these systems. These factors include occlusion, low resolution, 

noise, illumination, pose variation, expressions, aging, and plastic surgery [4] 

[144]. These can be classified into two main groups: intrinsic and extrinsic factors 

[4]. Intrinsic factors are tied to the inherent attributes of the human face, including 
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aging, facial expressions, and plastic surgery, directly influencing the system. 

Conversely, extrinsic factors entail alterations in facial appearance like occlusion, 

low resolution, noise, illumination, and pose variation, as depicted in Figure 2.16. 

a) Occlusion: Partial occlusion emerges as a notable obstacle in the realm of face 

recognition endeavors. The concealment of specific facial features impedes the 

precise identification of individuals. For instance, eyeglasses or sunglasses can 

obscure the eyes; earrings or hair might veil the ears; scarves could shroud a 

substantial portion of the face; and facial hair like moustaches and beards might 

obscure significant facial attributes, as portrayed in Figure 2.16 (a). These factors 

have a detrimental effect on the performance of face recognition systems. 

Researchers have been investigating various approaches to address these challenges 

[145] [146].  

b) Low Resolution: Figure 2.16 (b) illustrates that pictures captured from 

surveillance video cameras often contain small faces, resulting in low resolution. 

Comparing a low-resolution query image with a high-resolution gallery image 

poses a significant challenge. The limited data in a low-resolution image leads to 

the loss of many important details, which can significantly degrade recognition 

accuracy. Researchers have been exploring various approaches to address this issue 

[145] [147]. 

c) Noise: Digital images are susceptible to different types of noise, which can result 

in poor accuracy in detection and recognition tasks. The introduction of noise into 

images can occur through various means, depending on how the image is created. 

Pre-processing plays a crucial role in the overall face detection and recognition 

system [148]. Figure 2.16 (c) visually depicts the original image along with the 

presence of salt and pepper noise. 

d) Illumination: The variations in illumination can have a significant negative 

impact on the performance of face recognition systems. Various factors, such as 
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background light, shadow, brightness, and contrast, can contribute to these 

variations. Figure 2.16 (d) illustrates images captured under different lighting 

conditions. Several approaches to addressing illumination-related challenges are 

discussed in [149] [150] [151]. 

e) Pose Variation: Pose variation poses a significant challenge for face recognition 

systems. Matching a profile face with a frontal face in the gallery requires frontal 

face reconstruction [12]. This reconstruction is necessary because dataset images 

typically contain frontal views, and matching non-frontal profile faces can lead to 

inaccurate results. Researchers have proposed various approaches to convert non-

frontal faces to frontal faces, which can improve recognition accuracy [12] [51]. 

The detrimental impact of pose variation on algorithm performance is extensively 

discussed in the proposed approaches [45] [152] [153]. Figure 2.16 (e) illustrates 

the different pose distributions of an individual. 

f) Expressions: Facial expressions play a crucial role in expressing our emotions, 

as depicted in Figure 2.16 (f). They can alter the facial geometry, and even a slight 

variation can introduce ambiguity for face recognition systems. Muscle 

contractions that occur quickly lead to changes in facial features like the mouth, 

cheeks, and eyebrows, which are all part of facial expressions. Ongoing research 

focuses on incorporating facial expressions into face recognition methods [40] 

[149].  

g) Aging: Aging is a natural factor that significantly impacts face recognition 

systems, often posing challenges for algorithms. The face comprises various 

components, including skin tissues, facial muscles, and bones. When muscles 

contract, they cause distortions in facial features. However, aging brings about 

substantial changes in facial appearance, such as changes in facial texture (e.g., 

wrinkles) and face shape over time. Face recognition systems should be capable of 
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addressing these changes [154] [155]. Figure 2.16 (g) illustrates the different 

textures of the faces of the same individual at various ages. 

h) Plastic Surgery: Plastic surgery is another significant factor that can impact the 

accuracy of face recognition. Incidents have occurred where individuals have 

undergone plastic surgery due to accidents, resulting in their faces becoming 

unrecognizable to existing face recognition systems. This factor is particularly 

relevant in cases where criminals attempt to alter their identities through plastic 

surgery. Therefore, as highlighted in [156], there is a need for an identification 

system capable of recognizing faces even after reconstructive surgery. The impact 

of plastic surgery on facial appearance is depicted in Figure 2.16 (h). 

 

Figure 2.16 Factors Affecting Facial Recognition Accuracy  

2.6 State-of-the-Art Datasets for Face Recognition  

In the course of the last three decades, numerous face datasets have been 

created, reflecting a clear trend towards larger scales, diverse sources, and real-



  

 

52 

 

world unconstrained conditions. As simpler datasets such as LFW reached 

performance saturation, the development of increasingly complex datasets became 

essential to facilitate further research in face recognition [157]. It is fair to say that 

the evolution of face datasets played a significant role in shaping the direction of 

face recognition research. In this section, we present Table 2.4, which includes 

freely available training datasets, and Table 2.5, which lists the testing datasets 

specifically designed for deep face recognition tasks. 

Table 2.4 Publicly Available Training Datasets for Face Recognition 

S. No. Datasets Publication 

Year 

No. of 

Images 

No. of 

Classes 

No. of Images per 

Class 

(Min/Average/Max) 

1. MillionCelebs 

[158] 

2020 18.8 

million 

6,36,000 29.5 

2. MS-Celeb-1M 

(Challenge 3) 

[159] 

2018 4 million 80,000 NR 

3. IMDB-Face 

[160] 

2018 1.7 

million 

59,000 28.8 

4. VGGFace2 [28] 2017 3.31 

million 

9,131 87/362.6/843 

5. UMDFaces-

Videos [161] 

2017 22,075 3,107 NR 

6. MS-Celeb-1M 

(Challenge 1) 

[162] 

2016 10 million 100,000 100 

7. MS-Celeb-1M 

(Challenge 2) 

[162] 

2016 1.5 

million 

20,000 1/NR/100 

8. MegaFace [163] 2016 4.7 

million 

6,72,057 3/7/2469 

9. VGGFace [98] 2015 2.6 

million 

2,622 1,000 

10. CASIA 

WebFace [164] 

2014 4,94,414 10,575 2/46.8/804 

(*NR is Not Reported). 

Table 2.5 Publicly Available Testing Datasets for Face Recognition  

S. No. Datasets Publication 

Year 

No. of Images No. of 

Classes 

No. of Images per 

Class 

(Min/Average/Max) 
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1. IJB-C [165] 2018 3,13,000 

images 

11,779 videos 

3531 42.1 

2. RFW [166] 2018 40,607 11,429 3.6 

3. IJB-B [167] 2017 11,754 images 

7,011 videos 

1.845 36.2 

4. CPLFW [42] 2017 11,652 3,968 2/2.9/3 

5. CALFW [168] 2017 12,174 4,025 2/3/4 

6. CFP [169] 2016 7,000 500 14 

7. UMDFaces 

[170] 

2016 3,67,920 8,501 43.3 

8. IJB-A [171] 2015 25,809 500 11.4 

9. COX-S2V [52] 2015 NR 1,000 1 image, 4 video 

clips 

10. PaSC [172] 2013 2,802 265 NR 

11. YTF [44] 2011 3,425 1,595 48/181.3/6,070 

12. Chokepoint 

[173] 

2011 64,204 images 

54 videos 

54 NR 

13. FG-NET [174] 2010 1,002 82 12.2 

14. YTC [175] 2008 1,910 47 NR 

15. LFW [41] 2007 13,000 5000 1/2.3/530 

(*NR is Not Reported). 

2.7 Summary of the Chapter  

The current chapter describes conventional algorithms, deep learning-based 

approaches, transfer learning-based approaches, and ensemble learning-based 

approaches for face recognition. Limitations stemming from facial variations like 

lighting, pose variations, and expressions can affect the performance of 

conventional algorithms. Additionally, their ability to accurately recognize faces in 

uncontrolled settings is limited. The development of reliable automated face 

recognition systems utilizing computer vision techniques has revolutionized due to 

the rise of deep learning. With little pre-processing, multi-layer neural networks 

can detect visual features directly from image pixels. Deep learning's primary 

benefit is that it does not require manually created features. As part of the classifier 

learning process, it instead performs automated and optimized feature extraction, 

which does not compromise the correctness of face recognition.  
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The recent emergence of deep learning techniques has effectively addressed the 

limitations of conventional approaches. However, challenges persist in deep learning 

methodologies, including the reliance on extensive data and high-computing-power 

systems (e.g., GPUs for parallel processing). Acquiring substantial annotated facial 

datasets for facial recognition tasks remains problematic due to privacy concerns.  

Ensemble learning can be employed by averaging the weights of multiple deep 

learning models to improve recognition accuracy. This approach amalgamates the 

advantages of deep learning and ensemble learning, culminating in enhanced 

generalization performance in the final model. The primary aim of this research is 

to create a streamlined framework that facilitates face recognition using minimal 

facial data and computational resources, all while maintaining a high level of 

accuracy. Consequently, the concept of deep ensemble transfer learning has been 

utilized to introduce an exceedingly efficient face recognition system rooted in deep 

learning principles. The detailed discussion of the proposed face recognition system 

is provided in the subsequent chapter of this thesis, followed by the chapter that 

introduces the data pre-processing techniques used in the presented research. 
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         CHAPTER-3 

3 DATASET PREPARATION AND PRE-PROCESSING 

In this chapter, we delineated the strategies used to select the required datasets, 

including the freely available Internet sources we referenced for the self-curated 

dataset of mugshots. The creation of the dataset serves as the cornerstone for the 

entire research work and offers a comprehensive understanding of the methods used 

for data collection, acquisition, preprocessing, and curation. These processes were 

meticulously orchestrated to uphold the dataset's integrity, quality, and applicability 

within the study. This chapter also provides insight into the meticulous 

preprocessing steps known as data oversampling carried out to enhance the utilized 

datasets. 

3.1 Datasets Used  

We used four standard datasets (LFW, CPLFW, GT Face, and YTF) and one 

self-curated dataset to evaluate the efficiency of the HE-CNN model by considering 

different aspects of the evaluation. 

LFW: Established in 2007, this dataset serves as a standard for face recognition 

and verification. It is publicly accessible and comprises 13,233 images depicting 

5749 distinct identities. Among these, 1680 classes encompass multiple images, 

while 4096 classes feature only a single image. The images in the dataset are 

uniformly sized at 250x250 pixels, with a resolution of 96 DPI (Dots Per Inch), and 

are stored in Joint Photographic Experts Group (JPEG) format. The majority of the 

facial images exhibit a frontal orientation, specifically designed to address 

challenges like illumination shifts and partial occlusions [41]. 

CPLFW (Cross-Pose LFW): Released in 2018, this dataset is an upgraded 

iteration of the LFW standard dataset, specifically focusing on images showcasing 

substantial pose deviations. It encompasses a total of 11,652 images depicting 3928 
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individuals, each class containing 2 or 3 images. Notably, the State-of-the-Art 

(SOTA) face recognition accuracy experiences a decline of 15-20% when applied 

to CPLFW in comparison to LFW. This discrepancy can be attributed to CPLFW's 

inclusion of images exhibiting pronounced variations in unconstrained factors [42]. 

The visual representations of LFW and CPLFW can be observed in Figure 3.1 (a) 

and Figure 3.1 (b), respectively. 

GT Face: Photographs of 50 individuals were taken during two or three sessions 

spanning from June 1, 1999, to November 15, 1999, at the Center for Signal and 

Image Processing within the Georgia Institute of Technology. These images 

constitute the Georgia Tech face dataset. Each individual within the dataset is 

depicted through 15 color images captured in JPEG format. These images possess 

a resolution of 640x480 pixels and feature a busy background. On average, the 

facial regions in these images measure 150x150 pixels [43]. Notably, the faces 

contained in the dataset maintain a frontal orientation, as illustrated in Figure 3.2 

(a). 

YTF: It is a collection of facial videos that was curated to address the challenges 

associated with unconstrained facial recognition within videos. The dataset 

encompasses a total of 3,425 videos, featuring 1,595 distinct individuals. The 

source of these videos is YouTube. Each subject has about 2.15 videos, on average. 

The length of the video clip varies within the dataset, ranging from a minimum of 

48 frames to a maximum of 6,070 frames. A typical video clip spans around 181.3 

frames [44]. Sample frames from this dataset can be observed in Figure 3.2 (b). 

Self-Curated Dataset: The primary objective of generating the self-curated dataset 

is to address the class imbalance inherent in LFW. The fact that the dataset's largest 

class contains 500 times more images than its smallest counterpart serves as an 

illustration of this imbalance. Such an imbalance can lead the model to exhibit bias 

towards the more abundant class. Additionally, the creation of this dataset serves 

to account for the presence of low-resolution images. Unlike standard datasets that 
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utilize high-resolution cameras, our dataset aims to incorporate real-world 

scenarios. To exemplify real-time face recognition applications, a self-curated 

dataset featuring 10 categories of criminals is formulated. Rigorous manual 

curation has been conducted to eliminate mislabeled or unclear images. Each 

category is represented by 25 meticulously chosen images to maintain a balanced 

distribution. From this pool, 10 images from each category are selected to craft 

images with reduced resolution and partially obscured faces. This results in 35 

images per category within the created dataset. To ensure equitable representation, 

transformations are applied to individual class images, generating 50 augmented 

samples per class. Images for this self-generated dataset are sourced from Google 

(freely available images), specifically focusing on criminal subjects. Recognizing 

that video frames often capture multiple faces concurrently, an additional test 

dataset is constructed, encompassing 50 diverse images featuring multiple faces. 

This comprehensive dataset is now primed to demonstrate the viability of real-time 

surveillance systems. It is accessible for research purposes at the following link: 

https://data.mendeley.com/datasets/226275vfxz/2. Now, the meticulously devised 

dataset is structured to emulate real-world scenarios, incorporating variables such 

as partial occlusion, illumination shifts, pose variations, and low resolution, all of 

which are illustrated in Figure 3.3.     

 

(a)                                                          (b) 

Figure 3.1 Sample Images of (a) LFW and (b) CPLFW 

https://data.mendeley.com/datasets/226275vfxz/2
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Figure 3.2 Sample Images of (a) GT Face and (b) YTF Dataset 

 

Figure 3.3 Sample Images of Self-Curated Dataset 

3.2 Data Oversampling  

Data augmentation, or data oversampling, serves as a strategy to amplify the 

dataset by generating virtual iterations of each image using a range of image 

transformation techniques. This practice is particularly valuable in the context of 

image classification tasks, as the augmentation process contributes to enhancing 
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model performance by providing a broader and more varied dataset [176]. In the 

presented research, we integrated data augmentation methodologies to rectify the 

inherent imbalances present in the datasets. This approach encompasses a diverse 

set of transformations, including but not limited to mirroring, rotation, shearing, 

cropping, zooming, and alterations to color saturation [114] [177].  

Algorithm 3.1 specifies the complete process of oversampling the dataset in the 

present research. For every image, one augmentation technique (ai) is randomly 

selected within configured thresholds, controlled by a parameter ′t′, to apply a 

random magnitude of the transformation. If the dataset contains p samples in each 

class and the value of p varies within the classes of the dataset, then the proposed 

algorithm generates n target samples in each class to make it a class-balanced 

dataset. It selects the random augmentation ai and applies all the r transformations 

to the randomly selected image. The output image Iout is generated after applying 

the transformations and added to the class C of the dataset. Figure 3.4 demonstrates 

a set of randomly generated oversampled images. Through the implementation of 

oversampling techniques, the datasets are equalized, leading to a uniform 

distribution of images across all classes. The quantity of images for oversampling 

is determined by selecting the maximum image count among all classes within the 

dataset. Some synthesized images of the self-curated dataset are also created by 

manually adding partial occlusion, illumination, and noise to the images, as shown 

in Figure 3.3. The standard class imbalanced datasets, such as the LFW and GT 

face datasets discussed in Section 3.1, have gone through oversampling techniques 

to make them balanced and increase the number of samples in each class. 
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Figure 3.4 Sample Output of Oversampled Images 

Algorithm 3.1 Algorithm for the Process of Data Oversampling 

 Input: Dataset D contains C different classes where each class consists of less 

than or equal to n unique samples, n is the maximum number of images in any 

class of the dataset, and A= [a1, a2, a3, a4, a5], where A is the set of all 

transformations applied on datasets. 

a1 = [centerCrop + ShiftScaleRotate + CLAHE] 

a2 = [randomRotate90 + ShiftScaleRotate] 

a3 = [flip + resize + randomBrightness] 

a4 = [transpose] 

a5 = [strongTransformation] 

 Output: Dataset D contains C different classes where each class consists of n 

unique samples. 

 

 1: procedure Oversampling (D, n, A) 

 2: n         target number of images per class 

 3: for all C ϵ D do 

 4:  p         number of images in class C 

 5:  while p ≤ n do 

 6:   I          select one random image of C 

 7:   ai                select one random transformation function from A  

 8:   r           transformations in ai   

 9:   I         Iout    

 10:   for all r ϵ ai do 

 11:    Iout           r(Iout) 

 12:   end for  

 13:   q          Iout 

 14:   C          C Ս q  

 15:   p          p + 1  

 16:  end while 

 17: end for 

 18: end procedure 
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Here, a detailed discussion of the used data augmentation techniques and the 

application of these techniques in existing SOTA is given. 

CenterCrop: The "CenterCrop" data augmentation approach isolates and extracts 

the central component of an image while excluding the surrounding areas. This 

method frequently improves the dataset's diversity and makes it easier to train 

machine learning models by concentrating on the image's most noticeable elements. 

The size of the original image is decreased, resulting in a new image that captures 

the core content by executing a center crop. This strategy is especially helpful when 

the principal object of interest is in the center and the surrounding context is less 

important. Center cropping can also help reduce unwanted noise or pointless details 

in the dataset, improving the generalization and performance of the model. Object 

recognition, classification, and segmentation are a few examples of image 

processing jobs that frequently use the center crop data augmentation technique 

[178] [179] [180]. Models are exposed to alterations in the main image content as 

a result of their application, which promotes resilience and adaptability in handling 

various scenarios and points of view. 

ShiftScaleRotate: The technique of "ShiftScaleRotate" serves as a data 

augmentation method that introduces random affine transformations, including 

shifting, scaling, and rotating, to augment the training dataset. This approach 

diversifies the perspectives from which an object is observed within the dataset, 

enriching its variety. By incorporating these transformations, the dataset's diversity 

is heightened, bolstering the resilience and adaptability of machine learning models 

[181] [182]. Importantly, this augmentation strategy achieves these improvements 

without necessitating the acquisition and annotation of additional data points. 

CLAHE: Contrast Limited Adaptive Histogram Equalization (CLAHE) data 

augmentation is a technique that employs adaptive histogram equalization in 

selected localized regions to enhance image contrast and detail. Contrary to 
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traditional histogram equalization, which may make the noise worse, CLAHE 

focuses on smaller image portions, preventing over-enhancing while maintaining 

the integrity of the entire image. This augmentation technique finds frequent 

application in enriching image datasets, especially within the realm of computer 

vision tasks. By introducing fluctuations in contrast and texture, it effectively 

heightens model resilience and performance [183] [184] [185]. 

RandomRotate90: The data augmentation method known as "RandomRotate90" 

introduces random rotations in 90-degree steps to images [186]. This method 

introduces variation and improves the model's performance and robustness by 

exposing the model to a variety of object orientations within the dataset. This 

augmentation method works exceptionally well for applications like object 

recognition, where there are a wide variety of object orientations. By including such 

rotations, the dataset becomes more inclusive and enables the model to generalize 

successfully across a variety of orientations without the need for additional labeled 

data. 

Flip: The "Flip" technique is a data augmentation approach that entails mirroring 

images horizontally or vertically. This strategy enriches dataset diversity by 

showcasing objects in altered orientations or viewpoints. Horizontal flipping entails 

a left-to-right reversal, whereas vertical flipping involves an up-to-down reversal. 

Frequently employed in image processing and computer vision applications, 

flipping serves to enhance model generalization and overall performance, 

particularly in tasks where object orientation is of secondary importance [187] 

[188]. Through the integration of these mirror-image alterations, the dataset gains 

breadth, thereby enhancing the model's proficiency in detecting and comprehending 

objects across diverse vantage points. 

Resize: The technique of "Resizing" in data augmentation involves adjusting the 

dimensions of images while preserving their original aspect ratio. This method 
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modifies image size within a dataset, either increasing or decreasing resolution and 

it is widely employed. The versatility of resizing enables images to be standardized 

to meet specific input size prerequisites for machine learning models or to introduce 

size variations for enhanced generalization. During resizing, images can undergo 

enlargement or reduction, impacting the level of detail and potentially accentuating 

distinct attributes. This method proves especially valuable when handling images 

of disparate dimensions within a dataset or when preparing data to align with 

precise model input specifications. Employing resizing as a data augmentation 

approach renders the dataset adaptable to the model's requirements, fostering 

heightened performance and accuracy during both training and testing stages [189] 

[190]. 

RandomBrightness: The data augmentation approach known as "Random 

Brightness" encompasses the application of random changes to the brightness levels 

within images. Through this method, fluctuations in illumination are introduced, 

bolstering the dataset's resilience and capacity to capture distinct lighting situations. 

By incorporating random brightness adjustments, the augmentation procedure 

emulates real-life settings characterized by shifting lighting conditions. 

Consequently, the model's capacity to generalize effectively and achieve robust 

performance across a spectrum of environments is heightened. Notably beneficial 

for tasks like object detection and recognition, where objects can manifest amidst 

diverse lighting scenarios, this technique proves to be an invaluable asset [191] 

[192]. 

Transpose: It serves as a data augmentation technique involving the exchange of 

rows and columns within an image matrix. The introduction of transpose 

augmentation injects diverse spatial layouts of objects and patterns, enriching the 

dataset's variety. Through the application of transpose, the dataset gains an 

assortment of alternate perspectives for the same image, permitting the model to 

glean insights from varying spatial correlations. This augmentation method is 
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especially advantageous in endeavors like image classification and pattern 

recognition, wherein object orientations may differ. The process of transposition 

gives the model the ability to handle changes in how objects are aligned and how 

they are arranged in space. This allows the model to be more general and perform 

better [193]. 

StrongTransformation: In the context of data augmentation, a "Strong 

Transformation" refers to a more profound and impactful alteration applied to an 

image. This category of transformation frequently encompasses a fusion of various 

augmentation techniques, including rotations, flips, adjustments in brightness, 

contrast, and other modifications. The utilization of strong transformations aims to 

introduce substantial diversity into the dataset, compelling the model to navigate 

through a spectrum of scenarios and amplifying its capacity to withstand shifts in 

real-world conditions. Such transformations prove especially advantageous during 

the training of models intended to navigate intricate and heterogeneous 

environments, exposing the model to an extensive array of potential inputs and 

circumstances [194]. 

These techniques are combined and used in different ways in our work to create 

a large dataset that can improve the performance of the model. 

3.3 Summary of the Chapter  

In conclusion, the dataset preparation chapter is a thorough walkthrough of the 

complex process of converting unstructured, low-quality raw data into a well-

organized, high-quality dataset. It demonstrates the commitment to transparency 

and rigor in determining the dataset's suitability for answering the research 

questions and serves as a crucial preface to the next analytical chapters, establishing 

the foundation for insightful deductions and significant discoveries. Data 

oversampling techniques have been applied to address the challenges posed by 

imbalanced classes within datasets and instances where certain classes are 
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underrepresented due to a limited number of images. The self-made dataset has 

been created to demonstrate the real-time application of the present research. The 

present work used four standard datasets and one self-curated dataset for the 

evaluation of the implemented system that is going to be discussed in the next 

chapter of the thesis.  
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CHAPTER -4 

4 A NOVEL METHOD FOR AUTOMATIC FACE 

RECOGNITION SYSTEM 

In this chapter, a detailed overview of the proposed automated face recognition 

system and HE-CNN model has been discussed. The proposed and implemented 

modifications to the baseline models are also discussed in sub-sections of this 

chapter. The face detection in an automated system is done using SSD as it is faster 

and accurate in comparison to other existing face detection algorithms. 

4.1 The Proposed Automated Face Recognition System 

This section proposes an automated system for criminal face identification and 

also helps police officials identify crime-prone areas. Figure 4.1 depicts the 

graphical representation of the proposed automated recognition system that 

comprises face capture, face detection, face recognition, alert generation, and 

prediction of crime-prone regions. Algorithms 4.1, 4.2, 4.3, and 4.4 demonstrate 

the workings of an automated recognition system proposed in the present research. 

The methodology in the present research is divided into four modules: database 

creation, criminal recognition, alert generation, and prediction of crime-prone 

areas.  

In the provided algorithms, the video is captured from the Global Positioning 

System (GPS)-enabled camera that attaches the location coordinates 𝐿 =

{𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔} with the video frames 𝐷 = {𝐹𝑖, 𝐿}𝑖=1
𝑛 , where 𝐹𝑖 is the 𝑖𝑡ℎ frame, and 𝐿 

is the location coordinates of the camera. The GPS is used in the presented solution 

to track the current location of the static cameras that are deployed in different 

locations of the city. Then, the number of detected and aligned faces {{𝐴1, 𝐿 }, 

{𝐴2, 𝐿 }, …., {𝐴𝑦 , 𝐿}} from the captured video frames using SSD is stored in 𝐴 

along with the location coordinate L. The detected and aligned faces with the 
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location coordinates are transferred to the recognition module for the recognition 

of criminals using the HE-CNN model. The recognized faces {{𝑅1, 𝐿}, {𝑅2, 𝐿}, …, 

{𝑅𝑦, 𝐿} and the location coordinates are sent to the alert generation phase. The 

system finds out the distance between the police stations 𝑃 = {{𝑙𝑎𝑡1, 𝑙𝑜𝑛𝑔1}, 

{𝑙𝑎𝑡2, 𝑙𝑜𝑛𝑔2}, …, {𝑙𝑎𝑡𝑧, 𝑙𝑜𝑛𝑔𝑧}}  and the location of the criminal 𝐿 = {𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔} 

using the Haversine formula [195]. After calculating the distance, Đ = min(𝐻𝑗) 𝑗=1
𝑧  

stored the distance from the nearest police station. Then, the implemented system 

generated an alert via message {𝐼𝑖, 𝐿}𝑖=1
𝑦

 and e-mail {𝑅𝑖, 𝐼𝑖, 𝐿}𝑖=1
𝑦

 to the registered 

contact number and e-mail ID of the nearest police station, where 𝐼𝑖 is the 

information (name, age, gender, crime, date of crime, identity mark) of the 𝑖𝑡ℎ 

criminal, L is the location of the criminal, and 𝑅𝑖 is the image of the criminal. 

Parallelly, the location coordinates of the identified criminal L= {𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔} is 

stored in a separate file to form clusters of crime-prone regions. 𝐿′= {{𝑙𝑎𝑡′, 𝑙𝑜𝑛𝑔′}, 

{𝑙𝑎𝑡′′, 𝑙𝑜𝑛𝑔′′}, …., {𝑙𝑎𝑡𝑦′, 𝑙𝑜𝑛𝑔𝑦′}} contains the location coordinates of identified 

criminals collected through the cameras installed in different locations. The clusters 

C={𝑐𝑖 }𝑖=1
𝑝

 are formed using the K-means clustering technique [196]. These clusters 

are then visualized on a Google Map, as the traffic flow in different areas is 

represented. This information serves as a valuable tool for police officials to 

identify regions that are prone to criminal activity. The input and output of the 

implemented system are given below. The results produced by Algorithm 4.1 serve 

as the input for Algorithm 4.2. Likewise, Algorithm 4.2's output is utilized as input 

for Algorithm 4.3. Algorithm 4.4, on the other hand, receives input in the form of 

location coordinates for all identified criminals, which are then used to create 

clusters in crime-prone regions.  

Input: Video frames from the GPS-enabled camera 𝐷 = {𝐹𝑖, 𝐿}𝑖=1
𝑛  and location 

coordinates of registered police stations 𝑃 = {𝑙𝑎𝑡𝑖, 𝑙𝑜𝑛𝑔𝑖}𝑖=1
𝑧   
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//where 𝐹𝑖 is the 𝑖𝑡ℎ  frame, 𝑛 is the total number of frames, 𝐿 = {𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔} is the 

location coordinates (i.e., latitude and longitude) of the camera that is the same for 

all the frames, and 𝑧 is the number of registered police stations. 

Output: Message and e-mail containing image and information about the criminal 

𝑀 = {𝑚𝑖, 𝑒𝑖}𝑖=1
𝑦

 and clusters of the crime-prone regions C={𝑐𝑖 }𝑖=1
𝑝

 

//where 𝑦 is the number of criminals identified, and p is the number of clusters 

formed. 

Algorithm 4. 1 Face Detection 

 Input: Video frames from the GPS-enabled camera 𝐷 = {𝐹𝑖, 𝐿}𝑖=1
𝑛  and location 

coordinates of registered police stations 𝑃 = {𝑙𝑎𝑡𝑖, 𝑙𝑜𝑛𝑔𝑖}𝑖=1
𝑧   

//where 𝐹𝑖 is the 𝑖𝑡ℎ  frame, 𝑛 is the total number of frames, 𝐿 = {𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔} is the 

location coordinates (i.e., latitude and longitude) of the camera that is the same 

for all the frames, and 𝑧 is the number of registered police stations 

 Output: Detected faces with location coordinates {Ai, L} of 𝑦 criminals 

 

 1. procedure FaceDetection (D) 

 2.       𝐷 = {{𝐹1, 𝐿 }, {𝐹2, 𝐿 }, …., {𝐹𝑛, 𝐿 }}                                                                                    

 3.    Repeat 

 4.  for all {Fi, L} ϵ D do 

 5.    SSD              {𝐹𝑖}                         

 6.   𝐴                  {{𝐴1, 𝐿 }, {𝐴2, 𝐿 }, …., {𝐴𝑦, 𝐿}}      

 7.  end for  

 8.    until 𝒏 times 

 9.  return {𝑨𝒊, 𝑳}𝒊=𝟏
𝒚

 

 10. end procedure 

 

Algorithm 4.2 Face Recognition 

 Input: Detected faces and location coordinates of criminals from algorithm 

4.1(i.e., {Ai, L}} 

 Output: Recognized faces with location coordinates {Ri, L} of 𝑦 criminals 

 

 1. procedure FaceRecognition (A) 

 2. A ={{A1, L }, {A2, L }, …., {Ay, L}}   

 3.   Repeat 

 4.  for all {Ai, L} ϵ A do 

 5.    HE-CNN                {𝐴𝑖}                          

 6.   𝑅                {{𝑅1, 𝐿 }, {𝑅2, 𝐿 }, …., {𝑅𝑦, 𝐿}  

 7.  end for  
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 8.   until 𝒚 times 

 9.  return {𝑹𝒊, 𝑳}𝒊=𝟏
𝒚

 

 10. end procedure 

 
Algorithm 4.3 Alert Generation 

 Input: Recognized faces and location coordinates of criminals from algorithm 

4.2 (i.e., {Ri, L}} and registered police stations records P 

 Output: Message and e-mail containing image and information about the 

criminal (i.e., 𝑀 = {𝑚𝑖, 𝑒𝑖}𝑖=1
𝑦

 

 

 1. procedure AlertGeneration (R, P) 

 2. // P is the police station record that contains the contact details, e-mail ID, 

and latitude and longitude of all registered police stations 

 𝑅 = {{𝑅1, 𝐿}, {𝑅2, 𝐿}, …., {𝑅𝑦, 𝐿}}                            

 3. 𝐿 = {𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔} 

 4. 𝑃 =  {{𝑙𝑎𝑡1, 𝑙𝑜𝑛𝑔1}, {𝑙𝑎𝑡2, 𝑙𝑜𝑛𝑔2}, …., {𝑙𝑎𝑡𝑧, 𝑙𝑜𝑛𝑔𝑧}}  

 5.   Repeat 

 6.  for all {𝑹𝒊, 𝑳} ϵ R do 

 7.   Repeat 

 8.   for all {𝑷𝒋} ϵ P do   

 9.     𝐻𝑗        {𝐿, 𝑃𝑗 } 𝑗=1
𝑧  

 10.    Đ                 Min(𝐻𝑗) 𝑗=1
𝑧        

 11.      end for 

 12.   until 𝒛 times 

 13.   𝑚𝑖                {𝐼𝑖, 𝐿}𝑖=1
𝑦

 

 14.   𝑒𝑖                  {𝑅𝑖, 𝐼𝑖, 𝐿}𝑖=1
𝑦

 

 15.  end for  

 16.   until 𝒚 times 

 17. return {𝒎𝒊, 𝒆𝒊}𝒊=𝟏
𝒚

 

 18. end procedure 

 

 

Algorithm 4.4 Clusters of Crime Prone Regions 

 Input: Location coordinates of the recognized criminals 

 Output: Clusters of the crime-prone regions C={𝑐𝑖 }𝑖=1
𝑝

 

 

 1. procedure Cluster (L) 

 2. // 𝐿′ stores the location coordinates (𝐿) of all the identified criminals from 

the cameras installed in different locations   

𝐿′= []                           

 3. Repeat 

 4.  for k              1 to y  do 
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 5.   (𝑙𝑎𝑡𝑘′, 𝑙𝑜𝑛𝑔𝑘′)= L 

 6.   𝐿′= 𝐿′+ (𝑙𝑎𝑡𝑘′, 𝑙𝑜𝑛𝑔𝑘′)   

 7.  end for 

 8. until 𝒚 times 

 9. // Therefore, 𝐿′= {{𝑙𝑎𝑡′, 𝑙𝑜𝑛𝑔′}, {𝑙𝑎𝑡′′, 𝑙𝑜𝑛𝑔′′}, …., {𝑙𝑎𝑡𝑦′, 𝑙𝑜𝑛𝑔𝑦′}}  

{𝑐1, 𝑐2, … , 𝑐𝑝}                 K-means(𝐿′) 

 10. C={𝑐𝑖 }𝑖=1
𝑝

                

 11. return C 

 12. end procedure 

 

4.2 The Proposed Modified Architecture of Baseline Models 

In this section, various pre-trained models such as ResNet50, VGG19, and 

DenseNet169 have been used for the present work. These models were fine-tuned 

and combined through ensemble transfer learning to create an optimized hybrid 

model specifically designed for the task at hand. The proposed modification 

consists of a baseline model and customized classification layer. For the base 

network, the pre-trained ResNet50, VGG19, and DenseNet169 models, using their 

initial weight parameters have been utilized. The base architecture of pre-trained 

models is originally trained on the ImageNet dataset and includes 1000 columns of 

distinct weight matrices at the end [64]. However, these weight matrices are not 

significant for our experiments, as the classes in the face datasets differ from those 

in the ImageNet dataset. To adapt the model to our task, we introduced two new 

weight matrices in the classification head section with a Leaky ReLU activation 

function. We employed Kaiming initialization to initialize these weight matrices 

[197]. Kaiming initialization has been utilized to prevent the activation outputs of 

the layers from exploding during the forward pass in a deep neural network. At 

each layer ′l′, the weight matrix is initialized with random numbers drawn from a 

standard normal distribution, where each random number is multiplied by the value 

of ′fan_in′, representing the number of input connections or the number of neurons 

in the previous layer that connect to the current layer. It indicates the size of the 

input space for a specific layer ′l′. Further, ′fan_out′ refers to the number of output 
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connections, or the number of neurons in the current layer that connect to the next 

layer. It represents the size of the output space for a specific layer. Therefore, in the 

present work, we replaced Xavier initialization [198], where the weights of a layer 

are initialized using random values selected from a uniform distribution with 

specific bounds, as shown in equation (4.1). 

        𝑆𝐷 =
√2

√𝑓𝑎𝑛_𝑖𝑛+𝑓𝑎𝑛_𝑜𝑢𝑡
                                     (4.1) 

Here, SD is the Standard Deviation of the random numbers drawn from a 

standard normal distribution, which are used to initialize the weights of a layer.      

The initial layers of the CNN model are responsible for extracting features, while 

the final layers are utilized for classification purposes. The compact representations 

of the pre-trained models used in this study (VGG, ResNet, and DenseNet) are 

illustrated in Figure 4.2. However, based on experimental findings in the field of 

facial recognition algorithms, relying solely on pre-trained models is insufficient to 

achieve optimal accuracy. Therefore, certain modifications have been implemented 

to enhance the recognition accuracy of these models. In this work, a modified 

architecture for the base models is introduced, which involves the incorporation of 

global pooling, batch normalization (BN), and dropout in the classification layers. 

The addition of a pooling layer helps reduce the number of trainable parameters in 

the model. Typically, two types of pooling techniques have been employed, namely 

average pooling and max pooling, which can be mathematically described using 

equations (4.2) and (4.3). 

𝑃 = 𝑂𝑚𝑎𝑥
𝑛,𝑛 (𝐹)                                            (4.2) 

                 𝑃 = 𝑂𝑎𝑣𝑔
𝑛,𝑛 (𝐹)                                             (4.3) 

In the present work, the input feature map F obtained from the previous 

convolutional layer has been processed using pooling operations. The maximum 

pooling operation, denoted as 𝑂𝑚𝑎𝑥
𝑛,𝑛 (𝐹) operates on the input feature map of 
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size 𝑛 × 𝑛, while the average pooling operation, denoted as 𝑂𝑎𝑣𝑔
𝑛,𝑛 (𝐹), calculates the 

average value. The output of the pooling layer, denoted as P, is obtained by 

concatenating the maximum and average values using the concatenate function in 

the Keras library. Both the maximum and average pooling techniques have their 

advantages, and their performance can vary depending on the activation map’s 

maximum and average values. To preserve both of these values, the concatenation 

technique has been employed. Global pooling is used to reduce each channel in a 

feature map to a single value and serves as an alternative to densely connected or 

fully connected layers in a classifier. It helps reduce the model’s complexity. Batch 

normalization has been utilized to normalize the positive and negative features from 

the previous convolutional layer, addressing the issue of covariate shift [122]. It 

effectively improves accuracy without any side effects [199]. To prevent 

overfitting, dropout layers have been added for regularization. Dropout is a 

regularization technique that randomly drops out a fraction of the neurons during 

training. The optimal dropout value for the model is determined experimentally, as 

it can significantly impact the model’s accuracy [199]. The non-linearity functions, 

such as ReLU [200], PReLU [197], Leaky ReLU [201], etc., can be placed before 

or after the BN layer. In the present work, the use of Leaky ReLU after the BN 

layer gives better results. Therefore, we used the Leaky ReLU activation function 

because it alleviates the problem of “dying ReLU” [201]. The mathematical 

expression for calculating the value of Leaky ReLU is provided in equation (4.4). 

𝑓(𝑥) = max(0.01 ∗ 𝑥, 𝑥)                           (4.4) 

The Leaky ReLU activation function is defined as follows: when given a 

positive input x, it produces a value of x; however, if the input is negative, it outputs 

a minimum value of 0.01 times x. This modification allows Leaky ReLU to produce 

an output for negative inputs as well. Unlike the standard ReLU function, this 

modification results in a non-zero gradient on the left side of the mathematical 

graph, effectively addressing the issue of “dead neurons” in that region. The 
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modified architecture of the baseline models, incorporating Leaky ReLU and other 

enhancements, is depicted in Figure 4.3. The reasons for these modifications in the 

baseline model architecture are discussed in Table 4.1, outlining the benefits and 

justifications for each modification. 
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Figure 4.2 The Architecture of Classification Layers of Pre-Trained Models (ResNet50, 

DenseNet169, VGG16, and VGG19) 

 

Figure 4.3 The Modified Architecture of the Baseline Model Consisting of GMP, GAP, 

BN, dropout, and FC layers (The Dotted Line Shows the Modified Part of the Model) 
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Table 4.1 The Persuasive Reasons for the Rectification of the Classification Layers of 

Baseline Models 

S. 

No. 

Charact-

eristics 

Standard 

ResNet50 

Standard 

VGG19 

Standard 

DenseNet

169 

Modified 

Architecture 

Persuasive 

Reasons for the 

Modifications 

1. Pooling 

layer 

Average 

pooling 

No pooling 

layer 

GAP Concatenatio

n of GAP and 

GMP 

The activation 

map from the 

previous layer 

can outperform 

its mean value, 

and vice versa. 

2. No. of FC 

layer 

1 3 1 2 Adding a layer 

enhances ResNet 

and DenseNet, 

while removing 

one improves 

VGG. 

3. Linear 

activation 

ReLU ReLU ReLU Leaky ReLU To address the 

issue of dying 

ReLU. 

4. Regulariz-

ation 

No 

dropout 

No dropout No 

dropout 

The dropout 

layer is used 

To minimize the 

overfitting issue. 

 

4.2.1 The Proposed Modified DenseNet169 Model for Face Recognition 

Dense Convolutional Neural Network proposed by Huang et al. [72] comprises 

a convolution and pooling layer, transition layers, dense blocks, and a classification 

layer. The convolution layer holds the filters to be applied to the feature map, 

whereas the pooling layer helps minimize the dimension of the feature map. The 

dense block is utilized to connect all the layers in such a way that each layer receives 

input from all the preceding layers. The current layer concatenates the features and 

passes its own feature maps to all the subsequent layers. The addition of dense 

blocks increases the number of channels, resulting in a complex model. Therefore, 

the transition layer helps to control the complexity of DenseNet. The concept of 

skip connections, similar to residual networks [70], is also utilized to enhance the 

performance of the network without increasing its depth. The problem of vanishing 

gradient [202] is successfully circumvented in DenseNet by the use of skip 

connections. In CNN, two layers l and l−1 are connected using the composite 
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function F, which consists of the convolution layer, pooling layer, batch 

normalization, and Rectified Linear Unit (ReLU). The outcome of the preceding 

layer  𝑋𝑙−1 is considered input to the next layer  𝑋𝑙, as represented in equation (4.5).    

                                                            𝑋𝑙 = 𝐹(𝑋𝑙−1)                                             (4.5) 

However, the layers 0, 1, 2, …. , 𝑙 − 1 are connected in the dense block in such 

a way that the concatenation of the outputs [𝑋0, 𝑋1, 𝑋2, … ,  𝑋𝑙−1 ] of all the layers is 

passed as input to the subsequent layer, as represented in equation (4.6). In this 

way, a layer acquires the aggregate information of all the preceding layers. Hence, 

dense convolutional networks are named due to the dense connectivity between the 

layers in the network. 

                                              𝑋𝑙 = 𝐹([𝑋0, 𝑋1, 𝑋2, … ,  𝑋𝑙−1 ])                        (4.6) 

The present work proposes the improved architecture of DenseNet169 by 

adding global pooling, batch normalization (BN), and dropout in the classification 

layers of the model. The modified architecture can be mathematically expressed 

using equations (4.7) – (4.15), and a diagrammatic representation is given in Figure 

4.4. 

   𝑋6 = 𝐹([𝑋0, 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5])                               (4.7) 

                                                          𝑋6 =TL(𝑋6)                                              (4.8) 

                                              𝑋18 =  𝐹([𝑋6, 𝑋7, … , 𝑋17])                                      (4.9) 

                                                         𝑋18 =TL(𝑋18)                                                        (4.10) 

                                             𝑋50 =  𝐹([𝑋18, 𝑋19, … , 𝑋49])                               (4.11) 

                                                        𝑋50 =TL(𝑋50)                                          (4.12) 

                                            𝑋82 =  𝐹([𝑋50, 𝑋51, … , 𝑋81])                               (4.13) 

                                        𝑂 =Concat (GAP(𝑋82), GMP(X82))                           (4.14) 
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                                                            𝐶 =H(O)                                                      (4.15)  

Here, [𝑋0, 𝑋1, … , 𝑋82] is the concatenation of the outputs of the layers in the 

dense block. TL is the transition layer applied to the output received from the dense 

block consisting of BN, ReLU, and 1х1 Convolution layer followed by global 

average pooling. F is a composite function comprising BN, ReLU, 1х1 Convolution 

layer followed by BN, ReLU, and 1х1 Convolution layer. Moreover, the Concat 

operation denotes the concatenation of GAP and GMP. H is a function containing 

BN, Dropout, Leaky ReLU, and two fully or densely connected layers succeeded 

by logarithmic SOFTMAX. The output of H is the number of classes represented 

as 𝐶. 

 

Figure 4.4 The Proposed Modified Architecture of DenseNet169 Consisting of GMP, 

GAP, BN, dropout, and Dense/ Fully Connected Layers (Orange Dotted Line Shows the 

Modified Part of the Model). 
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4.2.2 The Proposed Modified VGG19 Model for Face Recognition 

The deep Convolutional Neural Network (VGGNet), specifically the VGG19 

configuration, is employed in this study. VGG19 encompasses 19 layers: 16 

convolutional layers and 5 pooling layers for the feature extraction phase, followed 

by 3 fully connected layers for classification purposes [67]. Within the 

convolutional layer, diverse filters are applied to the feature map, while the pooling 

layer maintains the map's dimensions. During training, the convolutional layers 

process RGB images of a consistent size, with dimensions of 224 × 224. Pre-

processing involves subtracting the calculated mean RGB value from each pixel in 

the image. The image then traverses through a series of convolutional (CONV) 

layers employing 3x3 filters, a fixed stride of 1, and spatial padding. Max-pooling 

is executed over a 2x2-pixel window with a stride of 2. Subsequent to the 

convolutional layers, three Fully-Connected (FC) layers come into play. The first 

two FC layers comprise 4096 channels each, while the final FC layer consists of 

1000 channels, aimed at classifying each class in the ImageNet Large-Scale Visual 

Recognition Challenge (ILSVRC) dataset. The last layer is the Softmax layer in the 

architecture. 

      A composite function F, encompassing convolutional layers, pooling 

layers, Rectified Linear Units (ReLU), and Batch Normalization (BN), serves to 

link two adjacent layers, denoted as l and l – 1. Notably, Xl is reliant on the output 

of Xl – 1, as illustrated in equation (4.16). In the context of VGG19, the range for l 

spans from 1 to 5, corresponding to the five blocks [𝑋1, 𝑋2, … ,  𝑋5 ] that delineate 

the complete architectural structure. 

                                                        𝑋𝑙 = 𝐹(𝑋𝑙−1)                                      (4.16) 

The outcome of each block serves as input for the subsequent block. The 

ultimate output feeds into the stack of FC layers, denoted by function D, comprising 

three fully connected layers. Following these layers is the application of logarithmic 
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Softmax, as depicted in equation (4.17). The result, represented as C, stems from 

the output of function D and signifies the count of classes.  

                                                              𝐶 = 𝐷(𝑋5)                                          (4.17) 

The modifications to the architecture involve the incorporation of global 

pooling, batch normalization, and dropout into the pre-existing classification layers, 

aimed at refining the VGG19 architecture. The adapted VGG19 architecture is 

visually outlined in Figure 4.5, while its mathematical elucidation is detailed in 

equations (4.18) – (4.20). 

                                                         𝑋5 = 𝐹(𝑋4)                                             (4.18) 

                                                                  Ô = Ƒ (𝑋5)                                               (4.19) 

                                                           ¢ =  Ħ(Ô)                                               (4.20)       

The output of block 4 (denoted as 𝑋5) undergoes processing through the 

function Ƒ, wherein Ƒ is formed by concatenating Global Average Pooling (GAP) 

and Global Max Pooling (GMP). This amalgamation is mathematically depicted in 

equation (4.21). 

                Ƒ(𝑋5) = GAP(𝑋5) ꚛ GMP(𝑋5)                       (4.21)                                                                                                     

In this context, the symbol ꚛ signifies the fusion of global max pooling (gmp) 

and global average pooling (gap), while Ħ stands for a composite function that 

encompasses Batch Normalization (BN), Dropout, and Leaky ReLU, along with 

two fully connected layers, culminating in logarithmic Softmax. The result, ¢ 

emanates from the output of Ħ and corresponds to the count of classes.        

4.2.3 The Proposed Modified ResNet50 Model for Face Recognition 

A deep neural network architecture, ResNet50, proposed by He et al. [70] 

consists of 50 layers and comprises 4 stages, represented as S1, S2, S3 and S4. It uses 

residual blocks and identity blocks to overcome the vanishing gradient problem, 
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which is a common issue in deep neural networks that can prevent effective 

training. To begin the process, the input image undergoes an initial convolution (Ic) 

using a kernel size of 7x7. Subsequently, a max-pooling layer with a 3x3 kernel 

size and a 2-stride is applied. This leads to a reduction in the image's width and 

height to one-fourth of its original dimensions, while the channel size is augmented 

to 64. Each of the four stages comprises two residual blocks and one identity block. 

The residual block serves as a foundational unit, introducing skip connections to 

facilitate smoother gradient flow throughout the network. It encompasses two 

convolutional layers, followed by a skip connection that adds the input to the output 

of the second convolutional layer. This skip connection enables the gradient to 

circumvent the convolutional layers, directly progressing to the subsequent layer, 

thereby preventing the gradient from vanishing. In comparison, the identity block 

represents a specialized version of the residual block, where the input and output 

share identical dimensions. It encompasses three convolutional layers: the first and 

third layers possess a 1x1 kernel size and a stride of 1, while the second layer 

employs a 3x3 kernel size and a stride of 1 or 2, contingent on the input size. The 

skip connection in the identity block is a simple identity mapping, which allows the 

gradient to flow more easily through the network.           

Average pooling and one Fully-Connected (FC) layer is used after a stack of 

convolutional layers. The FC layer consists of 1000 channels to classify each class 

of the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) dataset. The 

last layer is the Softmax layer in the architecture. A composite function 𝐹 

containing the convolution layers as well as the pooling layer, along with the 

Rectified Linear Unit (ReLU) and Batch Normalization (BN), is used to connect 

two layers, l and l – 1. Here, Sl uses the output from Sl – 1 as shown in equation 

(4.22). In ResNet50, l is defined from 1 to 4, as we have four such stages 

[𝑆1, 𝑆2, … ,  𝑆4 ] to represent the entire architecture. 

                                                              𝑆𝑙 = 𝐹(𝑆𝑙−1)                                       (4.22)     
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Figure 4.5 The Architecture of the Proposed Modified VGG19 

The output of every block is passed as input to the next block. The last output 

of  𝑆4 is passed to the stack of average pooling and FC layer represented by a 

function 𝐷 followed by logarithmic Softmax as shown in equation (4.23). 𝐶 is the 

output of the function that represents the number of classes. 

                                                              𝐶 = (𝑆4)                                             (4.23) 

The modification in the architecture is done by the addition of global pooling, 

batch normalization, and dropout in the existing classification layers in order to 

improve the architecture of ResNet50. The modified architecture of ResNet50 has 

been represented in Figure 4.6, and the mathematical explanation is expressed 

through equations (4.24) – (4.26). 

                                 𝑆4 = 𝐹(𝑆3)                                                 (4.24) 
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                                                               € = Ƒ (𝑆4)                                             (4.25) 

                                                              ¢ =  Ħ(€)                                             (4.26)                                                       

The output of stage 4 (𝑖. 𝑒. , 𝑆4) is processed through the Ƒ function, where Ƒ 

consists of the concatenation of Global Average Pooling (GAP) and Global Max 

Pooling (GMP), mathematically represented using equation (4.27). 

                                              Ƒ(𝑆4) = GAP(𝑆4) ꚛ GMP(𝑆4)                       (4.27) 

Here, the symbol ꚛ denotes the concatenation of gmp and gap, and Ħ represents 

a function that consists of BN, Dropout and, Leaky ReLU, along with two fully 

connected layers that are followed by logarithmic Softmax; ¢ is the output of Ħ i.e., 

the number of classes. 

 

Figure 4.6 The Architecture of the Proposed Modified ResNet50 
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4.3 The Proposed and Implemented Novel Hybrid Ensemble CNN (HE-

CNN) 

The use of ResNet, VGG, and DenseNet in an ensemble model for face 

recognition can lead to improved accuracy, robustness, diversity, and flexibility in 

the model design. ResNet, VGG, and DenseNet are all deep neural network models 

that have been widely used for image classification tasks [203] [204] [205]. Each 

of these models boasts a distinct architecture designed to encapsulate varied 

features and patterns inherent in an image. Through amalgamating their outputs, 

the ensemble model attains superior accuracy in contrast to any standalone model. 

Ensemble models exhibit heightened resilience against overfitting and a greater 

propensity to generalize well on novel data. By melding disparate models, the 

ensemble can glean insights from a broader spectrum of features and patterns, 

cultivating robustness against input variations. ResNet, VGG, and DenseNet each 

present distinct architectural nuances. Consequently, integrating them within an 

ensemble introduces diversity to the models, thereby fostering enhanced overall 

performance. Specific strengths and weaknesses in feature extraction are intrinsic 

to each model. For instance, ResNet might excel in capturing edge and corner 

features, whereas DenseNet might prove adept at discerning intricate patterns 

within textures. We can take advantage of their complementary strengths by 

combining the models. Using an ensemble allows for more flexibility in the design 

of the model. By adjusting the weights assigned to each model, we can optimize 

the ensemble to achieve the desired level of accuracy, efficiency, and resource 

utilization. Therefore, the ensemble of the modified versions of these three models 

has been used to get an optimized hybrid model for the face recognition task. 

Algorithm 4.5 adapts the optimized baseline models and employs an ensemble 

learning strategy to craft an effective hybrid model. The stacking method, a 

hallmark of ensemble learning, has employed to devise this hybrid model tailored 

for the face recognition task. The ultimate prediction of the hybrid model is realized 
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by aggregating outcomes from the fine-tuned baseline models through a weighted 

sum operation. This operation, commonly known as weighted average [206], is 

often employed in ensemble models to accord greater significance to predictions 

from better-performing models. The idea behind the weighted sum operation is to 

give different weights to the predictions of each model in the ensemble based on 

how well they did on a validation set. Models exhibiting superior performance 

receive higher weights, while those performing less effectively receive lower 

weights. As a result, the ensemble's final prediction bears a more pronounced 

influence from the better-performing models and a diminished influence from the 

weaker ones. Applying the weighted sum operation to ensemble models allows us 

to harness the strengths of multiple models while mitigating their shortcomings. 

This approach fosters superior overall performance and more resilient predictions 

[207]. The predicted face using the hybrid ensemble model, denoted as PHE−CNN, 

is defined by equation (4.28). Through experimentation, VGG19 showcases 

superior accuracy. Consequently, the VGG19 version is chosen over the VGG16 

counterpart. Nonetheless, the present work incorporated VGG19, DenseNet169, 

and ResNet50 within the hybrid model. The comprehensive procedure is visually 

outlined in Figure 4.7. 

                           𝑃𝐻𝐸−𝐶𝑁𝑁 = ∑ 𝑊𝑖
§
𝑖=1 ∑

1

∑ 𝑒𝛳𝑘
𝑇 𝑓(𝑗)𝐶

𝑘=1

 (
𝑒𝛳1

𝑇 𝑓(𝑗)

…

𝑒𝛳𝐶
𝑇 𝑓(𝑗)

)  𝑛
𝑗=1                       (4.28) 

Here 𝑊𝑖  denotes the weight of modified baseline models, § is 3 because the 

present work considered three models for the ensemble model, 𝑛 is the count of 

image samples in training data, 𝐶 denotes the number of classes in a dataset, 𝑓(𝑗) is 

the feature of the 𝑗𝑡ℎ sample, 𝛳 is the parameter matrix of the softmax loss function 

𝐿(𝛳), and 𝛳𝑘
𝑇 𝑓(𝑗)  denotes the inner product of 𝛳𝑘 and 𝑓(𝑗). The optimal values of 

𝑊1, 𝑊2, and 𝑊3 are selected using the VotingClassifier available in the scikit-learn 

library of Python (https://rb.gy/p0ig). 

https://rb.gy/p0ig
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Figure 4.7 The Proposed Hybrid Ensemble CNN (HE-CNN) Model 

4.4 Training of the Proposed Model and Hyperparameter Tweaking 

In the present work, model training is done in two steps.  

Step 1: First, freeze the early layers in the network and train only classification 

layers. However, the initial layers (i.e., the feature extraction layers) are not trained 

during the first step of training the network.  

Step 2: Then, a fine-tuned model is loaded from step 1, and unfreeze all the 

layers to train the complete model. Figure 4.8 provides a visual representation of 

the entire procedure.  

The model's training process incorporates the utilization of a one-cycle policy 

[208], which replaces the conventional fixed learning rate with cyclical learning 

rates. The efficacy of hyperparameter tuning in enhancing machine learning model 

accuracy is well established. In the present approach, the adjustment of learning 

rate, batch size, image size, epochs, and dropout parameters is carried out 
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experimentally in Chapter 5 of the thesis to fine-tune the pre-trained models for the 

specific task at hand. 

 

Figure 4.8 Steps for Training the Modified Models 

The selection of an appropriate learning rate is of paramount importance. If the 

learning rate is overly large, it might lead to an overshoot of the optimal value; 

conversely, if it is excessively small, convergence to the optimal value may 

necessitate a protracted number of iterations. Thus, the Learning Rate Finder (LRF) 

curve [208] has been employed to ascertain the optimal learning rate for the model. 

The LRF curve is an invaluable tool for automatically identifying a suitable 

learning rate for any given model. For instance, as depicted by the red dot in Figure 

4.9, it pinpoints the optimal learning rate for the deep learning model. The gradual 

elevation of the learning rate, initiated from an exponentially low value (e.g., 10-6) 
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and progressing to a higher value (e.g., 1), occurs during data training in small 

batches. The learning rate experiences oscillations between lower and upper 

boundaries during the cool-down phase before ultimately reverting to its initial low 

boundary. In the Softmax layer, a one-hot vector is made and used with categorical 

cross-entropy as the loss function to predict the type of data. This is shown in 

equation (4.29). 

                   𝐿(𝛳) = −
1

𝑛
∑ ∑ [𝑦𝑖𝑗 log(𝑝𝑖𝑗)]𝐶

𝑗=1
𝑛
𝑖=1                             (4.29) 

Where 𝑛 is the count of images in the training data, 𝑖 is the index of the input 

image (i.e., 𝑖𝑡ℎ  image), and 𝑗 is the class’s index, 𝑦𝑖𝑗 is the one-hot encoded label, 

and 𝑝𝑖𝑗 is the probability distribution over 𝐶 classes. Adam [209] optimizer has 

been used for the minimization of loss function. It is a commonly used optimizer 

for deep learning models [210] [211] [212]. In this research work, the technique of 

early stopping [213] [214] has been implemented to counter overfitting and enhance 

the model's ability for generalization. This technique entails continuous monitoring 

of the model's performance on a validation set throughout the training phase, 

stopping the training process when the performance starts to deteriorate, and 

helping to achieve global minima. One indication of approaching the global 

minimum is the convergence of the loss function. If the loss decreases consistently 

during training and reaches a stable value, it suggests that the model is converging 

towards a good solution. However, it does not guarantee that the global minimum 

has been reached, as the model may still be trapped in a suboptimal solution. The 

complete procedure for the training process is illustrated in Algorithm 4.5. The 

algorithm comprises two functions: the first function is responsible for updating 

parameters during the training process when the initial layers are frozen, while the 

second function updates the weights of the entire model after introducing the 

proposed layers in the classification section by unfreezing all layers. 
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Algorithm 4.5 Algorithm of the Proposed Approach for Training to Obtain Fine-

Tuned Models 

 Input: Training Dataset 𝐷 = {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑛 , where n is the count of input images in 

dataset, pre-trained CNN model (Here, VGG16, VGG19, ResNet50 and 

DenseNet169 are taken), no. of epochs (e), batch size (α), image size (m), 

calculated optimal learning rate using learning rate finder curve (η) 

 Output: Fine-tuned optimized CNN model for the addressed task 

(output_tuned_model) 

 

 1. procedure TL_step1 (D, CNN, e, α , m, η) 

 2. //first train head and freeze remaining layers 

 parameters             load_model(CNN, train_head=True) 

 3. repeat 

 4.  for all (𝒙𝒊, 𝒚𝒊) ϵ D do 

 5.   activation            forward_propagation(𝑥𝑖, parameters )   
 6.   cost              Loss_function(activation, 𝑦𝑖)   

 7.   gradient              back_propagation(activation,cost) 

 8.   parameters             weight_update(parameters, gradient, η) 

 9.  end for 

 10. until 𝒆 times 

 11. return tuned_model 

 12. end procedure 

 13. procedure TL_step2 (D, tuned_model, e, α, m, η) 

 14.  

 

//Unfreeze all the remaining layers and train entire model 

//Load model received from function TL_step1 (i.e., tuned_model)   

parameters             load_model(tuned_model, train_head=False) 

 15. repeat 

 16.  for all (𝒙𝒊, 𝒚𝒊) ϵ D do 

 17.   activation            forward_propagation(𝑥𝑖, parameters )   
 18.   cost              Loss_function(activation, 𝑦𝑖)   

 19.   gradient              back_propagation(activation,cost) 

 20.   parameters             weight_update(parameters, gradient, η) 

 21.  end for 

 22. until 𝒆 times 

 23. return output_tuned_model 

 24.  end procedure 
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Figure 4.9 Learning Rate Finder Curve 

4.4.1 IDENTIFICATION OF THE RANGE OF LEARNING RATE 

The optimal learning rate has been calculated using a learning rate finder curve 

that can be automatically generated using the lr.find() function. The learning rate 

finder curve is a graph that shows the relationship between the learning rate and the 

corresponding loss or metric value during model training. It is typically plotted with 

the learning rate on the x-axis and the loss or metric value on the y-axis. While 

analyzing the plot given in Figure 4.10, it is important to note that the learning rate 

exponentially increases after each batch update. After completing a batch, the 

learning rate is increased for the next batch. Observing the plot, we can see that the 

loss remains relatively flat in the range of 1e-10 (i.e., 10-10) to 1e-6 (i.e., 10-6). This 

indicates that the learning rate is too small for the network to effectively learn any 

meaningful patterns. However, starting around 1e-5 (i.e., 10-5), the loss starts to 

decline, indicating that this is the minimum learning rate at which the network can 

actually learn. As the learning rate increases to approximately 1e-4 (i.e., 10-4), the 

network exhibits rapid learning. A slight increase in loss can be seen just past 1e-2 

(i.e., 10-2), but the significant increase occurs at 1e-1 (i.e., 10-1). Towards the upper 

end, at 1e+1 (i.e., 10), the loss dramatically escalates, indicating that the learning 

rate is excessively high for the model to learn properly. Based on this plot analysis, 
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we can visually determine the lower and upper bounds for the learning rate range, 

so that the lower bound is 1e-5 (i.e., 10-5) and the upper bound is 1e-2 (i.e., 10-2). 

 

Figure 4.10 Identification of Learning Rate through LRF Curve [215] 

4.5 Summary of the Chapter 

This study centers on the implementation of an automated face recognition system 

comprising face detection, face recognition, alert generation, and the creation of 

clusters for regions with prominently identified desired faces. This proposed and 

implemented system has diverse applications, including locating missing individuals, 

criminal identification, and surveillance. In any face recognition process, the initial 

step entails detecting faces within images or videos, which our work accomplishes 

through SSD. For the face recognition stage, the present methodology employs transfer 

learning and ensemble learning to strike a balance between accuracy and computational 

efficiency. 

The present approach encompasses two phases: In the first phase, we harness the 

ImageNet dataset to generate pre-trained weights. These weights are subsequently 

utilized in the second phase, wherein standard face datasets aid in generating high-level 
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features such as facial landmarks (eyes, nose, mouth, etc.) within images. The 

enhancement of the model's recognition accuracy has been significantly improved 

through the utilization of hyperparameter tuning, a fact substantiated through 

experimental evidence presented in the next chapter of the thesis. The alert generation 

phase has been executed using the Haversine formula, determining the proximity of an 

individual to the designated alert location. In the subsequent chapter of the thesis, the 

proposed system has been evaluated and conducted an ablation study to examine 

the effects of the suggested modifications.  
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CHAPTER-5 

5 EXPERIMENTAL RESULTS AND DISCUSSION 

 Neurons serve as the computational units within a deep neural network (DNN), 

executing operations on data as it traverses the network. Each node within the DNN 

carries a weight value, learned during training, indicating its influence on prediction 

outcomes. These weights signify model parameters [216]. Hyperparameters, on the 

other hand, govern the training process. Crafting a Deep Neural Network (DNN) 

entails decisions like determining the hidden layer count between input and output 

layers and specifying node counts per layer. These aspects, while not directly tied 

to training data, are configuration variables. Hyperparameters typically remain 

fixed across tasks, while parameters change through training [216]. 

The endeavor to select optimal hyperparameter values for training a model 

using a tuned algorithm on a particular dataset is termed hyperparameter tuning. By 

optimizing model performance via a set of hyperparameters, the aim is to minimize 

a specified loss function, yielding improved results with fewer errors. Notably, the 

learning algorithm fine-tunes the loss based on input data, seeking the best solution 

within given constraints. Hyperparameters precisely shape this configuration. 

Inadequate adjustment of hyperparameters can lead to suboptimal outcomes even 

if model parameters are predicted accurately. In practice, the accuracy or confusion 

matrix might deteriorate [217]. 

For successful face recognition, meticulous hyperparameter tuning is crucial. 

The proposed model undergoes tuning via the judicious selection of pertinent 

parameters and hyperparameters for analysis and experimentation. This 

encompasses parameters like filter count, filter size, activation function, pooling 

size, etc., defined during model training at the sub-architecture level. It also 

involves decisions on learning strategies, weight initialization techniques to 

minimize the cost function, and hyperparameters such as learning rate, batch size, 
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image size, epoch count, and dropout, as discussed in the preceding chapter. The 

impact of these parameter and hyperparameter choices on face recognition accuracy 

is experimentally demonstrated in this chapter, aiming to illustrate the achievement 

of optimal outcomes. 

5.1 Experimental Setup and Evaluation Parameters 

Experiments have been conducted to independently assess the efficacy of face 

detection and recognition models. After assessing and comparing its performance 

with various available algorithms in Section 5.2, SSD is chosen to identify and align 

the faces for the recognition phase. The system is set up with Windows 10 and 

16GB of RAM, an NVIDIA GTX 1650 Ti with a 4GB GPU, and an AMD Ryzen 

5 4600H with Radeon Graphics. TensorFlow version is 2.4.0, whereas Keras and 

OpenCV versions are 2.4.3 and 4.5.1, respectively. Keras is used for the detection 

phase, and the implementation of the recognition stage is done using Fastai version 

1.0.61. The records of mugshots and police officers are stored in the SQLite 

database. 

The present research considered three evaluation parameters for the assessment 

of face detection algorithms: True Positive Rate (TPR), False Negative Rate (FNR), 

and False Positive Rate (FPR). TPR can also be called recall or sensitivity. It is the 

ability of the classification model to identify all the significant instances. FPR is 

the total count of false-negative assessments divided by the number of all negative 

evaluations. FNR shows the proportion of correct results that were missed and 

classified as incorrect. The formulae to estimate the values of TPR or recall, FPR, 

and FNR are given in equations (5.1) – (5.3), where TP refers to having both the 

actual and predicted label the same. For example, an image contains a face, and the 

algorithm also detects it as a face. FP is defined as the true label not being a face, 

but the predicted label being a face [218]. FN has the true label as a face, but the 

predicted label does not have a face. The definitions of the mentioned measures are 

depicted in Figure 5.1. 
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                                            𝑇𝑃𝑅 𝑜𝑟 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                      (5.1) 

                                         𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                (5.2)                                          

                                           𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
                                               (5.3) 

The classification accuracy is the evaluation parameter used to calculate the 

performance of the discussed fine-tuned modified models and other SOTA for the 

three considered datasets, which is calculated using the formula given in equation 

(5.4). 

                𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠
                       (5.4) 

The other two evaluation measures, such as precision and recall, have been used 

to assess the classification model because accuracy alone is insufficient to choose 

the best classifier due to the accuracy paradox [219]. Precision defines the number 

of true positives out of the predicted positives. Recall and precision can be derived 

from the formulas given in equations (5.1) and (5.5). The Receiver Operating 

Characteristic (ROC) curve is also used to evaluate the performance of the proposed 

modified models. The ROC curve gives an estimation of the rate of true positives 

relative to the rate of false positives for the classifier. In other words, it highlights 

the sensitivity of the classifier [220]. In addition, the total number of inaccurate 

predictions on the test set divided by all of the test set predictions can be used to 

compute the error rate given in equation (5.6). We can always determine accuracy 

from the error rate since they are complementary quantities.  

                                   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑙𝑦 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  
                                            (5.5) 

                𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠  
                           (5.6) 
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Figure 5.1 Confusion Matrix for Face Detection 

5.2 Results and Discussion on Various Modules of the Proposed Face 

Recognition System 

5.2.1 Self-Curated Dataset and Database of Criminals’ and Police Officials’ 

Records 

In the first module, we collected images of criminals from the Internet (freely 

available sources) and stored those images in different directories labeled with their 

names, as given in Figure 5.2. The information about the mugshots, such as the 

crime date, crime type, age, etc., is stored in the database, as delineated in Figure 

5.3 (a). The other table in the database is also created to store the registered email 

ID, mobile number, and location coordinates of the police stations manifested in 

Figure 5.3 (b). Personal numbers are used for testing the system; that is why they 

are scraped in the image given in Figure 5.3 (b) due to privacy concerns. 
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Figure 5.2 Images of Criminals Collected from the Internet 

 

(a)    

 

 

 

 

 

                                                              

  

 

 

   (b) 

Figure 5.3 Record Stored in Database (a) Criminals’ Records (b) Police Officials’ 

Records 
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5.2.2 Detection and Recognition Module 

This module contains two steps, namely face detection and face recognition. 

The first step is to detect the faces and then compare the detected and aligned faces 

from the gallery images to recognize the mugshot. 

5.2.2.1 Face Detection 

Face detection is a technology that identifies human faces in an image. Various 

traditional and deep learning-based methods have been introduced as SOTA for 

face detection. Traditional approaches like the Haar classifier, also known as the 

Viola-Jones algorithm, and the LBP classifier for face detection have their benefits 

and drawbacks, but the major differences are in terms of speed and accuracy. So, a 

Haar classifier is used in cases where there is a requirement for more accurate 

detections. But the LBP classifier is faster and, therefore, should be used in mobile 

applications or embedded systems [221]. The Haar classifier and the LBP classifier, 

both conventional algorithms, fail to achieve the desired detection accuracy, as 

demonstrated by the experimental findings presented in Table 5.1 and Table 5.2. 

Deep network approaches like MTCNN and SSD for face detection are efficacious 

in terms of their detection accuracy. 

Table 5.1 Detection Accuracy (Number of Detected Faces/Total Faces in an Image) and 

Time (in Sec) of Face Detection Algorithms on Sample Images 

S. 

No.  

Face Detection Algorithm No. of Faces Found in an 

Image/ No. of Faces Present 

in an Image 

Time (in 

Sec) 

1. SSD (Single Shot Multi-Box 

Detector) 

Image 1: 2/2 0.051 

Image 2: 5/5 0.032 

2.  MTCNN (Multi-Task Cascaded 

Convolutional Networks) 

Image 1: 2/2 2.723 

Image 2: 5/5 2.998 

3.  Haar Cascade (Viola Jones) Image 1: 1/2 0.234 

Image 2: 4/5 0.051 

4. LBP Cascade Image 1: 1/2 0.112 

Image 2: 1/5 0.045 
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Figure 5.4 Outputs of Different Face Detection Algorithms: (a) Face Detection using 

Haar Cascade (b) Face Detection using LBP Cascade (c) Face Detection using MTCNN 

(d) Face Detection using SSD                      

Images containing multiple faces are considered for the evaluation of the State-

of-the-Art face detection algorithms because a video frame can have more than one 

face at a particular instant in time. From Table 5.1, Figure 5.4 , and Table 5.2, it is 

experimentally proven that Haar cascade is accurate but slower than LBP cascade, 

while LBP is faster but less accurate. MTCNN and SSD are used in applications 

where accuracy has greater importance. But SSD is much faster in comparison to 

MTCNN and provides equivalent accuracy. The evaluation of the discussed face 

detection methods is also conducted using standard datasets like LFW, CPLFW, 

and the self-curated dataset in Table 5.2. After evaluating all the discussed methods, 

it is concluded that SSD is an efficient approach in terms of accuracy and 
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processing time for face detection. Therefore, we used the SSD framework to detect 

faces for the face recognition stage in the proposed recognition system. 

Table 5.2 Detection Score of Various Face Detection Algorithms (in %) 

  Face Detection Algorithm 

  SSD MTCNN LBP Cascade Haar Cascade 

S
. 

N
o

. 

D
a

ta
se

t 

T
P

R
 

F
P

R
 

F
N

R
 

T
P

R
 

F
P

R
 

F
N

R
 

T
P

R
 

F
P

R
 

F
N

R
 

T
P

R
 

F
P

R
 

F
N

R
 

 

1. 

C
P

L
F

W
 96.9 1.4 1.7 96.3 1.3 2.4 44.2 0.7 55.1 53.9 0.5 45.6 

 

2. 

L
F

W
 99.2 0.8 0 99.3 0.7 0 94.3 0.8 4.9 98.4 0.6 1 

 

3. 

C
ri

m
in

al
 

D
at

as
et

 92.9 1.7 5.4 93.4 2.3 4.3 44 0.6 55.4 53.7 1.3 45 

 

5.2.2.2 Face Recognition 

Experimental Results on LFW Dataset 

The split ratio of the dataset used in the experiment is 7:3, i.e., 70% of the 

samples in the dataset have been used for training, and 30% have been used for 

validation. Chapter 3 of the thesis provides an in-depth overview of the dataset. 

Classes containing more than one sample are considered for experimental 

evaluation (i.e., 1680 classes are considered). Data augmentation [114] [222], 

known as oversampling, has been utilized through a series of standard 

transformations such as vertical flip, horizontal flip, rotation, zooming, warping, 

scaling, and lighting to ensure balance in the considered classes. The total number 

of considered images for experimental evaluation is 13,440 after data augmentation 

(i.e., 9,408 are used for training and 4,032 are used for validation). Dropout values 

are set to 0.1 and 0.2 for the layers used in the modified architecture after rigorous 
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experiments. Training and validation losses for different models are illustrated in 

Table 5.3, and Table 5.4 lists the comparison of the intended approach with other 

existing techniques. The learning rate has been chosen randomly for pre-trained 

models, while modified pre-trained models utilize the learning rate identified 

through the learning rate finder curve. Figures 5.5 and 5.6 illustrate the training and 

validation losses over batches processed of pre-trained and modified pre-trained 

models, respectively. In Tables 5.3, 5.5, and 5.7, Train head=T (True) means 

training of the head only and the remaining layers are freezed, while Train head=F 

(False) denotes that all the layers are unfreezed and training is done for the complete 

model. The ROC curves for the pre-trained models and modified models are shown 

in Figure 5.7. 

 

Figure 5.5 Training and Validation Loss over Batches Processed Graphs for Pre-Trained 

(a) VGG16, (b) VGG19, (c) ResNet50, and (d) DenseNet169 in the LFW Dataset 

 

 
Figure 5.6 Training and Validation Loss over Batches Processed Graphs for Modified (a) 

VGG16, (b) VGG19, (c) ResNet50, and (d) DenseNet169 in the LFW Dataset 
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Figure 5.7 ROC Curves on LFW Dataset: (a) ROC Curves of Pre-Trained Models (b) 

ROC Curves of Modified Models 

Table 5.3 Training and Validation Loss of Pre-Trained Models (VGG16, VGG19, 

ResNet50, and DenseNet169) and Modified Pre-Trained Models with Proposed Classifier 

(PC) in LFW 

S. 

No. 

MU TH=

T/F 

E LR TL VL ER TA 

 

VA P R 

 Pre-Trained Models 

 

1. 

V
G

G
1

6
 F 30 1e-2 0.323 0.690 0.201 0.925 0.798 0.826 0.796 

 

2. 

V
G

G
1

9
 F 30 1e-2 0.369 0.981 0.271 0.917 0.728 0.828 0.725 

 

3. 

R
es

N
et

 

5
0
 

F 30 1e-2 0.250 0.623 0.169 0.922 0.830 0.860 0.832 

 

4. 

D
en

se
N

et

1
6

9
 

F 30 1e-2 0.210 0.752 0.188 0.923 0.811 0.862 0.812 

 Modified Pre-Trained Models with Proposed Classifier (PC) 

 

5. 

M
o

d
if

ie
d

 

V
G

G
1

6
 T 15 1e-2 0.193 0.173 0.051 0.934 0.948 0.949 0.950

1 

F 30 1e-6,    

8e-5 

0.064 0.078 0.022 0.981 0.977 0.977 0.977 
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6. 

M
o

d
if

ie
d

 

V
G

G
1

9
 T 15 1e-2 0.211 0.204 0.064 0.933 0.935 0.935 0.935 

F 30 1.1e-5, 

1e-4 

0.014 0.043 0.013 0.991 0.986 0.986 0.986 

 

7. 

M
o

d
if

ie
d

 

R
es

N
et

5
0

 T 15 2.09e-

3 

0.209 0.241 0.075 0.931 0.924 0.924 0.926 

F 30 1.91e-

6, 8e-5 

0.031 0.078 0.023 0.990 0.976 0.976 0.976 

 

8. 

M
o

d
if

ie
d

 

D
en

se
N

et
1

6
9

 T 15 1e-2 0.028 0.056 0.015 0.996 0.984 0.984 0.984 

F 30 1.32e-

6, 1e-5 

0.018 0.045 0.011 0.998 0.988 0.988 0.988 

(*Train_head is represented as TH, model used as MU, epoch as E, learning rate as LR, 

training loss as TL, validation loss as VL, error rate as ER, training accuracy as TA, 

validation accuracy as VA, precision as P, and recall as R) 

Table 5.4 The Comparison of the Proposed Work with other SOTA in the LFW Dataset 

S. 

No. 

Author, Year of 

Publication 

Techniques Used Accuracy 

(%) 

Error 

rate (%) 

1. Proposed work The hybrid model of the fine-

tuned pre-trained models using 

ensemble learning (HE-CNN) 

 

99.35 0.65 

2. Mishra et al. [223], 2022 Deep learning architectures + 

Hardmining loss 

95.55 4.45 

3. Ben Fredj et al. [224], 

2021 

GoogleNet +Data augmentation 99.20 0.80 

4. Kang [225], 2019 Self-learning CNN 94.9 5.10 

5. Wen et al. [113], 2016 Combination of softmax loss and 

center loss with CNN 

 

99.28 0.72 

6. Parkhi et al. [98], 2015 Deep CNN 98.95 1.05 

7. Sun et al. [27], 2014 DeepID 97.45 2.55 

       

Experimental Results on CPLFW Dataset 

In this experimental evaluation, random splitting of the CPLFW dataset has 

been done with a splitting ratio of 8:2 (i.e., 80% of images (9,322) have been used 
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for training and 20% (2,330) have been used for validating the model). The dropout 

value is set between 0.25 and 0.5. Training and validation losses for different 

models are mentioned in Table 5.5. Data augmentation is not applied to the images 

of the dataset as it contains balanced classes. The comparison of the proposed 

approach with other existing techniques is listed in Table 5.6. Finally, the training 

and validation loss over batches processed graphs for the pre-trained and fine-tuned 

baseline models are delineated in Figures 5.8 and 5.9. The ROC curves for the pre-

trained models and modified models are shown in Figure 5.10. 

 

Figure 5.8 Training and Validation Loss over Batches Processed Graphs for Pre-Trained 

(a) VGG16, (b) VGG19, (c) ResNet50, and (d) DenseNet169 in the CPLFW Dataset 

 

 

Figure 5.9 Training and Validation Loss over Batches Processed Graphs for Modified (a) 

VGG16, (b) VGG19, (c) ResNet50, and (d) DenseNet169 in the CPLFW Dataset 
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Figure 5.10 ROC Curves on CPLFW Dataset: (a) ROC Curves of Pre-Trained Models (b) 

ROC Curves of Modified Models 

 

Table 5.5 Training and Validation Loss of Pre-Trained Models (VGG16, VGG19, 

ResNet50, and DenseNet169) and Modified Pre-Trained Models with Proposed Classifier 

(PC) in CPLFW 

S. 

No. 

MU TH=

T/F 

E LR TL VL ER TA 

 

VA P R 

 Pre-Trained Models 

 

1. 

V
G

G
1

6
 F 15 1e-3 0.158 0.641 0.121 0.963 0.878 0.871 0.873 

 

2. 

V
G

G
1

9
 F 15 1e-3 0.162 0.635 0.128 0.956 0.871 0.865 0.872 

 

3. 

R
es

N
et

 

5
0
 

F 15 1e-3 0.067 0.450 0.090 0.985 0.909 0.900 0.905 

 

4. 

D
en

se
N

et

1
6

9
 

F 15 1e-3 0.050 0.437 0.088 0.989 0.911 0.920 0.919 

 

 

 

 
 Modified Pre-Trained Models with Proposed Classifier (PC) 

 

5. 

M
o

d
if

ie
d

 

V
G

G
1

6
 T 7 2.75e-

2 

1.162 0.975 0.207 0.773 0.792 0.779 0.798 

F 15 6.31e-

7, 1e-5 

0.894 0.889 0.189 0.811 0.810 0.826 0.816 
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6. 

M
o

d
if

ie
d

 

V
G

G
1

9
 T 7 1.1e-2 1.439 1.292 0.260 0.724 0.739 0.725 0.734 

F 15 1e-5,     

5e-4 

0.292 0.446 0.084 0.932 0.915 0.916 0.913 

 

7. 

M
o

d
if

ie
d

 

R
es

N
et

5
0

 T 7 1.32e-

2 

0.594 0.658 0.131 0.886 0.868 0.876 0.867 

F 15 2.2e-6,    

1e-4 

0.233 0.446 0.084 0.945 0.915 0.924 0.915 

 

8. 

M
o

d
if

ie
d

 

D
en

se
N

et
1

6
9

 T 7 1.32e-

2 

0.433 0.456 0.087 0.919 0.912 0.913 0.913 

F 15 5e-6,     

5e-5 

0.222 0.358 0.084 0.928 0.915 0.923 0.921 

(*Train_head is represented as TH, model used as MU, epoch as E, learning rate as LR, 

training loss as TL, validation loss as VL, error rate as ER, training accuracy as TA, 

validation accuracy as VA, precision as P, and recall as R) 

Table 5.6 The Comparison of the Proposed Work with other SOTA in the CPLFW 

Dataset 

S. 

No. 

Author, Year of 

Publication 

Techniques Used Accuracy 

(%) 

Error 

rate (%) 

1. Proposed work Hybrid model of the fine-tuned 

pre-trained models using ensemble 

learning 

91.58 8.42 

2. Liu et al. [226], 2021 Lightweight CNN 89.52 10.48 

3. Cao et al. [28], 2018 VGGFace2 84.10 15.90 

4. Liu et al. [227], 2017 SphereFace 81.40 18.60 

 

Based on the experimental findings regarding facial recognition algorithms on 

the LFW and CPLFW datasets, relying solely on pre-trained models is inadequate 

for achieving optimal accuracy. Some modifications need to be implemented to 

improve the recognition accuracy of the models. After obtaining fine-tuned 

modified baseline models, ensemble learning can be utilized to get SOTA 

competent recognition rates in standard datasets, as illustrated in Tables 5.4 and 

5.6. The original pre-trained models are trained on ImageNet, comprising 1000 



  

 

106 

 

classes. However, the number of classes mentioned in the last fully connected layer 

of the pre-trained models is insignificant in our experiments. Therefore, the 

approach in the presented work modified only the last fully connected layer to 

mention the count of classes in the used datasets for the experimental evaluation. 

The above results and graphs show that the pre-trained models, without any 

modification, do not provide the desired results. The spikes in the graphs of pre-

trained models in LFW show unstable validation accuracy during the whole training 

process, and accuracy is also significantly less than the proposed approach. The 

reason for getting too many spikes in validation loss can be the large value of the 

learning rate resolved in the graphs of CPLFW by taking the small value of the 

learning rate. Therefore, using the learning rate finder curve to identify the optimal 

learning rate for the model instead of taking random values is suggested. If the 

training loss keeps decreasing while the validation loss increases or remains 

constant, this is a sign of overfitting. It is evident from Figures 5.5 and 5.8 that data 

overfitting is alleviated by the suggested approach, as shown in Figures 5.6 and 5.9. 

The results in Tables 5.3 and 5.5 show that the present approach gives better results 

for VGG19, Resnet50, and DenseNet169; that is why these three fine-tuned models 

are considered for designing the ensemble model (HE-CNN). The proposed 

modifications in the classification layer and training process generated SOTA-

competent results and improved the recognition accuracy of the pre-trained models 

in LFW up to approximately 26% and 4% in CPLFW. The proposed and 

implemented ensemble model achieved competent accuracy compared to other 

existing methods requiring millions of identities to train the network (i.e., high GPU 

memory consumption and computational cost are required for existing methods like 

ArcFace, FaceNet, etc.). The ROC curves of the modified models given in Figures 

5.7 and 5.10 show the good fit of the modified models. 

Experimental Results on GT Face Dataset 
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The validation accuracy of the GT face dataset is approaching 100% recognition 

accuracy on a very small number of epochs for the proposed model. The dataset 

does not contain a variation of unconstrained factors. All the faces are frontal, and 

a very low illumination effect is considered. Therefore, it can be concluded that 

high accuracy is achieved with minimal effort if images are taken in a constrained 

environment. In the first phase of training, the image size is 128x128 and the batch 

size is 120, while in the second phase, the image size is 224x224 and the batch size 

is 96. The variation in image and batch sizes makes the model robust against the 

size of the image. The best model for the GT face database is achieved by 

considering the split ratio (SR) of 8:2, oversampling (O) using standard 

transformations, dropout (D) values of 0.12 and 0.25, image size (IS) of 224x224, 

training of all the layers (TH=F), optimal cyclic learning rates (LR), and 20 epoch 

(E) size. The model's performance is evaluated using training loss (TL), validation 

loss (VL), training accuracy (TA), validation accuracy (VA), precision (P), and 

recall (R). The difference in training and validation losses shown in Table 5.7 and 

Figure 5.11 demonstrates the reduction of underfitting in the model. Data 

augmentation has been used to increase the number of images in each class of the 

dataset. Each class is oversampled by a series of transformations, and a total of 

2500 images (50 samples per class) have been considered for the experiments. 

Table 5.8 illustrates the comparison of the modified model with other existing 

SOTA approaches. 

                       

Figure 5.11 Training and Validation Loss vs Processed Batches Curve (a) Without 

Oversampled Dataset (b) With Oversampled Dataset. 
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Table 5.7 Experimental Results of GT Face Dataset  

S. 

No. 

SR TH=

T/F 

D E LR TL VL TA VA P R 

 Oversampling 

1. 7:3 T 0.25, 

0.5 

5 1e-1 2.115 0.683 0.723 0.808 0.821 0.812 

2.  F  10 1e-3, 

3e-3 

0.055 0.016 0.982 0.991 0.991 0.990 

3. 7:3 T 0.12, 

0.25 

10 1e-2 1.229 0.609 0.798 0.844 0.847 0.842 

4.  F  20 1e-3, 

5e-3 

0.048 0.017 0.991 0.993 0.993 0.992 

5. 8:2 T 0.25, 

0.5 

10 6e-2 0.762 0.276 0.898 0.927 0.926 0.917 

6.  F  20 5e-4, 

2e-3 

0.020 0.024 0.994 0.992 0.993 0.991 

7. 8:2 T 0.12, 

0.25 

10 6e-2 0.512 0.229 0.910 0.940 0.949 0.940 

8.  F  20 6e-4, 

1e-3 

0.014 0.023 0.998 0.996 0.997 0.995 

 Without Oversampling 

9. 8:2 T 0.12, 

0.25 

10 6e-2 0.132 0.411 0.814 0.807 0.801 0.799 

10.  F  20 5e-4, 

2e-3 

0.130 0.123 0.981 0.983 0.981 0.980 

 

Table 5.8 The Comparison of the Proposed Work with other SOTA in the GT Face 

Dataset 

S. 

No. 

Author, Year of 

Publication 

Techniques Used Accuracy 

(%) 

Error 

rate (%) 

1. Proposed work Hybrid model of the fine-tuned 

pre-trained models using ensemble 

learning 

99.63 0.37 

2. Zhang et al. [228], 2022 Dictionary learning 76.67 23.33 

3. Muqeet et al. [229], 

2019 

LBP based on directional wavelet 

transform 

82.25 17.75 

4. Ayyad et al. [230], 2019 SVD+LDA 89.24 10.76 

5. Dora et al. [231], 2017 Gabor filter + Minimum Distance 

Classifier (MDC) 

92.50 7.50 
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Experimental results on YTF dataset 

The V2V recognition is achieved with approximately 100% accuracy as a large 

number of video frames of an individual are used for training (i.e., the training set 

is large). The experimental results on the YTF dataset have been done to show the 

recognition accuracy of the V2V face recognition approach. The confusion matrix 

and the output of the hybrid model on the YTF dataset are illustrated in Figures 

5.12 and 5.13, respectively. The number of frames in each class of dataset is varied. 

Therefore, a total of 4,587 frames from 50 individuals were used for the 

experimental results. The recognition accuracy of the hybrid model for the YTF 

dataset is achieved by considering the split ratio (SR) of 8:2, dropout (D) values of 

0.25 and 0.5, frame size (FS) of 224*224, optimal cyclic learning rates (LR), and 

20 epoch (E) size for all three considered modified pre-trained models. The 

diagonal values in the confusion matrix, as given in Figure 5.12, represent the 

number of correctly predicted faces. The output of the face recognition model is 

illustrated in Figure 5.13 in the form of the actual class/ predicted class/ loss/ 

probability of the predicted class. The comparison of the present work with other 

existing SOTA approaches is given in Table 5.9, which shows the SOTA 

competence of the presented work.  

 

Figure 5.12 Confusion Matrix of YTF Dataset Results 
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Figure 5.13 Output of the Face Recognition Model on YTF Dataset 

Table 5.9 The Comparison of the Proposed Work with other SOTA in the YTF Face 

Dataset 

S. No. Author, Year of 

Publication 

Techniques Used Accuracy 

(%) 

Error rate 

(%) 

1. Proposed work Hybrid model of the fine-

tuned pre-trained models 

using ensemble learning 

99.21 0.79 

2. Ben Fredj et al. [224], 

2021 

GoogleNet +Data 

augmentation 

96.60 3.40 

3. Liu et al. [232], 2021 EQFace 98.18 1.82 

4. Ding et al. [132], 2017 TBE-CNN 94.96 5.04 

5. Schroff et al. [26], 2015 FaceNet 95.10 4.90 

6. Taigman et al. [31], 

2014 

DeepFace 91.40 8.60 
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Experimental Results on Self-Curated Criminal Dataset 

A small criminal dataset has been created containing 25 images of each class of 

criminals, namely Haji Mastan, Vijay Mallya, Dawood, Harshad, Osama, 

Veerappan, Chhota Rajan, Muthappa Rai, Abu Salem, and Vikas Dubey, by 

downloading these images from the Internet to demonstrate the real-time 

application of face recognition. Mislabeled and vague images from the downloaded 

images are manually deleted, and 25 images of each class are considered to make a 

class-balanced dataset. Data augmentation, known as the oversampling technique, 

has been utilized to expand the count of samples in each class. In order to maintain 

the balance of the class, images in individual classes have been augmented to 

generate 50 samples using a set of transformations such as vertical flip, horizontal 

flip, mirroring, warping, scaling, rotation, zooming, and lighting. The dataset is 

divided into two sets consisting of 80% and 20% samples (i.e., 400 samples of the 

dataset are considered for training and 100 samples are taken for testing). Testing 

on a self-created dataset has been done in two ways. Firstly, the testing has been 

done using 100 random samples from 500 images. The accuracy of the presented 

hybrid model on a self-created dataset is 95%, while the precision score, recall 

score, and error rate are 0.954, 0.952, and 5%, respectively. The confusion matrix 

to analyze the correct results present in the diagonal of the matrix is delineated in 

Figure 5.14. 

Secondly, another testing dataset contains 50 images with more than one face 

to demonstrate the real-time surveillance results. The set of 50 images is distinct 

from the collection of 500 images but consists of the faces of the same 10 criminals 

and other unknown individuals. As the testing images contain more than one face, 

the recognition rate of the proposed technique in the criminal dataset has been 

calculated by manually analyzing each image, as shown in Figure 5.15, and 

achieving 87% recognition accuracy. 



  

 

112 

 

 
Figure 5.14 Confusion Matrix of Self-Curated Dataset Results 

 

 
Figure 5.15 Output of the Face Recognition Stage on Self-Curated Dataset 

 

5.2.2.3 Ablation Evaluation of the Modified Baseline Models for Face 

Recognition 

An ablation study is a research methodology commonly employed in machine 

learning and experimental sciences to investigate the impact of individual 

components or factors within a complex system, such as a machine learning model. 
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The term "ablation" refers to the removal or alteration of specific components or 

elements within the system to assess their contribution to overall system 

performance. In the context of machine learning models, an ablation study involves 

systematically disabling or modifying specific parts of the model or its training 

process to analyze their influence on the model's performance. By conducting 

ablation studies, researchers can fine-tune machine learning models, gain a deeper 

understanding of their inner workings, and make informed decisions about which 

components or methods are crucial for achieving the desired results. This 

methodology contributes to the advancement and optimization of machine learning 

algorithms and models [233] [234]. The study has been done to highlight the impact 

of various modifications made to the presented work on recognition accuracy, as 

illustrated in Table 5.10. Here, the LFW dataset has been utilized to perform the 

ablation evaluation. The configuration for the experiments is the same as discussed 

in Section 5.1. 

Table 5.10 Ablation Study of Modified Baseline Models 

S. 

No. 

Components for Ablation Evaluation RA (in %) of 

Modified 

DenseNet169 

RA (in %) 

of Modified 

ResNet50 

RA (in %) 

of Modified 

VGG19 

1. Effect of two-phase learning    

 • Recognition accuracy with 

two-phase learning 

98.84 97.61 98.64 

 • Recognition accuracy without 

two-phase learning 

98.49 92.49 93.55 

2. Effect of dropout layer    

 • Recognition accuracy with 

dropout layer 

98.84 97.61 98.64 

 • Recognition accuracy without 

dropout layer 

90.10 92.53 93.82 

3. Effect of learning rate    

 • Recognition accuracy with 

fixed learning rate 

81.13 83.07 72.83 

 • Recognition accuracy with 

cyclical learning rate 

98.84 97.61 98.64 

4. Effect of concatenation of GAP and 

GMP 
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 • Recognition accuracy with 

concatenation of GAP and 

GMP 

98.84 97.61 98.64 

 • Recognition accuracy without 

concatenation (only average 

pooling) 

98.20 96.23 98.10 

5. Effect of optimizer    

 • Recognition accuracy with 

Adam optimizer 

98.84 97.61 98.64 

 • Recognition accuracy with 

SGD optimizer 

98.10 96.23 97.81 

6. Effect of activation function    

 • Recognition accuracy with 

ReLU 

97.90 96.53 97.32 

 • Recognition accuracy with 

Leaky ReLU 

98.84 97.61 98.64 

7. Effect of the addition of fully 

connected layer 

   

 • Recognition accuracy with 

one/ three fully connected 

layer 

97.10 96.34 98.52 

 • Recognition accuracy with two 

fully connected layer 

98.84 97.61 98.64 

(*RA= Recognition Accuracy) 

a) Effect of two-phase learning on recognition accuracy: The concept of a two-

phase training process discussed in Chapter 4 of the thesis has been adopted in the 

present approach for training the model. This approach significantly increases 

recognition accuracy, as shown in Table 5.10.  

b) Effect of the dropout layer on recognition accuracy: The use of the dropout 

layer in the modified architecture alleviates the problem of overfitting. During 

training, when the dropout layer was not used, after 10 epochs, the training accuracy 

reached 99% while the validation accuracy was only 85%. But training the modified 

model with a dropout layer overcame this problem. The graph displayed in Figure 

5.16 (a) illustrates that there is a vast difference in training and validation loss when 

the dropout layer is not present (i.e., overfitting occurs). But the graph shown in 

Figure 5.16 (b) demonstrates that there is no overfitting in the model. 
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Figure 5.16 Training and Validation Loss: (a) Without Dropout Layer (b) With Dropout 

Layer 

c) Effect of learning rate on recognition accuracy: The use of a fixed learning 

rate may prevent improvement in validation accuracy. The difference in training 

and validation losses shown in Figure 5.17 illustrates the effect of fixed learning 

rates and cyclical learning rates on the performance of the model. Figure 5.17 (b) 

shows the parallel improvement of both the training and validation accuracy. The 

learning rate finder curve generated during experiments shown in Figure 4.9 has 

been used to find out the optimized learning rate. The use of a cyclical learning rate 

helps the model achieve better performance. 

 

Figure 5.17 Training and Validation Loss using: (a) Fixed Learning Rate (b) Cyclical 

Learning Rate 
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d) Effect of the concatenation of GAP and GMP on recognition accuracy: It is 

observed that sometimes the maximum value of the feature map received from the 

previous layers gives better results, and sometimes the average value is good. 

Therefore, the present work concatenated the global average pooling and global 

max pooling to get the optimized value for better performance. The recognition 

accuracy achieved after the concatenation is higher than the recognition accuracy 

with the use of only the global average pooling layer, as shown in Table 5.10. 

e) Effect of optimizer on recognition accuracy: The model has been evaluated on 

two optimizers, such as Adam and Stochastic Gradient Descent (SGD), to highlight 

the effect of selecting the optimizer for the network. The modified models have 

achieved higher accuracy with the Adam optimizer in comparison to SGD. 

Therefore, we used the Adam optimizer in the proposed modified models. 

f) Effect of activation function on recognition accuracy: The usage of Leaky 

ReLU after the BN layer yields better results in the present work, so we used the 

Leaky ReLU activation function because it mitigates the problem of dying ReLU. 

g) Effect of the addition of a fully connected layer on recognition accuracy: 

The motivation for the addition of a fully connected layer is discussed in Table 

5.10, and the addition of one fully connected layer in the network enhances the 

recognition accuracy of the pre-trained models. 

5.2.3 Alert Generation 

In this module, the location of the GPS-enabled CCTV camera has been 

identified after the successful recognition of any suspect, as shown in Figure 5.18. 

In this work, the camera of our system has been used for experimental purposes. 

Once the criminal has been identified and recognized using the module given in 

Section 5.2.2, the nearest police station from the current location of the criminal is 

searched using the Haversine formula given in equation (5.7), and automatically, it 

sends an alert via mail and message to the registered email ID and contact number 
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of the police official stored in the database given in Figure 5.3 (b). The Haversine 

formula has been used to calculate the shortest distance between the two locations 

on the sphere using their latitudes and longitudes. The information, photograph, 

and current location of the criminal are sent to the registered email ID, and the 

location is also sent to the registered mobile number, as shown in Figure 5.19.  

                𝐻 = 2𝑟sin−1(√𝑠𝑖𝑛2 (
ᶏ2−ᶏ1

2
) + cos(ᶏ1) cos(ᶏ2) 𝑠𝑖𝑛2(

ᶓ2−ᶓ1

2
)              (5.7)                   

Where r is taken as the earth’s radius (6371 km), the distance between the two 

location points on the earth is H; ᶏ1, ᶏ2 are considered the latitudes of the two 

points, and ᶓ1, ᶓ 2 are taken as the longitudes of the two points on the earth. 

 

Figure 5.18 Current Location of Criminal 
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Figure 5.19 Alert Generation via: (a) Mail and (b) Message 

5.2.4 Prediction of Crime Prone Areas 

All the identified locations (i.e., latitude and longitude) of criminals have been 

saved in a file given in Figure 5.20 in parallel once the criminal has identified in 

any location to cluster the crime-prone regions. On a weekly basis, the system 

generates the crime regions’ clusters and shows those regions on Google Maps. 

This module of the proposed criminal recognition system helps police officials 

analyze crime-prone areas. K-means clustering has been utilized to identify the 

clusters of crime-prone regions (areas where most of the criminals are identified), 

as highlighted in red in Figure 5.21.  

 
 

Figure 5.20 Location of Identified Criminals 
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Figure 5.21 Clusters of the Crime Prone Regions 

5.2.5 Time Complexity Analysis  

In the realm of research, it carries substantial importance to encompass both an 

algorithm's actual execution time and its time complexity. The quantifiable 

execution time offers a clear indication of the algorithm's performance in real-world 

settings. This can be determined by measuring the duration of the completion of a 

particular activity or the processing of each individual data element. In contrast, an 

algorithm's time complexity shows how much processing time is required in 

relation to the size of the input. This dimension imparts an abstract vantage point 

on the algorithm's efficiency. Time complexity is frequently conveyed through the 

big O notation, which establishes an upper limit on the algorithm's runtime within 

the worst-case scenario. This notation aids in comprehending how the algorithm's 

efficiency aligns with other methods. Thus, the integration of both the actual 

execution time and the time complexity in research engenders a holistic 

comprehension of the algorithm's real-world performance and its efficiency in 

relation to alternative approaches. 
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In the proposed system, the time complexity is contingent upon the participant 

algorithms, primarily focusing on the maximum execution time denoted as T. Here, 

T represents the maximum value among TSSD, THE-CNN, and TA. In the first phase, 

SSD is implemented for the detection of faces; let’s say it will take time of O(TSSD). 

The execution time of the second phase, i.e., the recognition stage, depends on the 

execution time of HE-CNN, say O(THE-CNN). Last, the third stage of alert generation 

takes time of O(TA). So, the total time complexity of the system is represented by 

equation (5.8).                                    

                         O(T) = O(TSSD) + O(THE-CNN) + O(TA)                              (5.8) 

Here, O(TSSD) is O(n), where n is the number of generated bounding boxes. In 

the proposed HE-CNN model, the assembling of three modified pre-trained models 

are used with time complexities of O(N1), O(N2), and O(N3), where N1, N2, N3 is the 

number of operations required to process a single input image through the network. 

After that, a weighted sum operation is used for the final prediction. The time 

complexity of the weighted sum operation in ensemble learning depends on the 

number of models in the ensemble and the size of the input data. Let's assume we 

have "x" models in the ensemble, and each model takes an input of size "m". In the 

weighted sum operation, we multiply each model's prediction by its corresponding 

weight and sum them up. In the worst case, the time complexity of the weighted 

sum operation can be expressed as O(x * m), where "x" is the number of models 

and "m" is the size of the input data. Therefore, THE-CNN is the maximum of N1, N2, 

N3, and (x*m). The time taken by the alert generation phase i.e., O(TA) depends on 

the number of deployed CCTV cameras and the number of registered police 

stations. The Haversine formula's time complexity is denoted as O(1). Consider a 

scenario where C cameras are deployed within a city and P police stations are 

officially registered. Consequently, the overall time taken to compute the minimum 

distance using the Haversine formula is represented by O(P * C * 1).  
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The time duration for a face recognition algorithm's execution is influenced by 

various factors, including the input image's dimensions, algorithm complexity, 

system processing capabilities, and implementation efficiency. Generally, the 

execution time for face recognition algorithms tends to elongate with larger input 

image sizes. This outcome arises from the increased computational requirements 

for face detection and recognition operations in larger images. Moreover, the 

complexity of the algorithm and the processing power of the underlying system 

play pivotal roles in determining the execution time. A more intricate algorithm or 

a system with limited processing capabilities could lead to extended execution 

times. Furthermore, the efficiency of the implementation itself exerts a notable 

influence on the execution time of the face recognition algorithm. Implementations 

that are well optimized can minimize superfluous computations and enhance 

overall performance. Providing an exact execution time in minutes and seconds for 

a face recognition algorithm is challenging, as it varies based on the aforementioned 

factors. The best method for figuring out how long a certain implementation will 

take to execute is to evaluate its performance using a representative dataset. This 

empirical assessment delivers a more precise estimate of the algorithm's execution 

time in real-world scenarios. These experiments were conducted on a system 

equipped with Windows 10, 16GB of RAM, and an NVIDIA GTX 1650 Ti with a 

4GB GPU. The conducted experiments encompass standard datasets as well as self-

curated dataset, collectively shedding light on the comprehensive execution 

performance of the proposed system. On average, model training necessitated 

around 1 hour and 15 minutes across various parametric configurations for the 

considered datasets. It required approximately 45 seconds to test a single image 

with a resolution of 1024 by 1024 pixels. 

5.3 Summary of the Chapter 

In this chapter, an outline of the experimental setup and design for the 

automated face recognition system is presented. Utilizing the ensemble learning-
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based HE-CNN model, we extracted results from diverse datasets, including LFW, 

CPLFW, GT face, YTF, and a self-created dataset. The assessment of the system's 

efficacy involves the utilization of evaluation parameters such as precision, recall, 

accuracy, error rate, and ROC curve. These metrics enable a comprehensive 

comparative analysis between the present work and the current state-of-the-art 

methods. The findings of the present research unequivocally underscore the 

superior performance of our proposed technique in contrast to prevailing deep 

learning methods for face recognition. Furthermore, a meticulous ablation study is 

undertaken on the presented approach, unraveling the effects of the modifications 

made to the pre-trained models integrated into the HE-CNN model. This analysis 

enhances the understanding of the specific enhancements contributed by these 

modifications. Acknowledging the significance of computational efficiency, we 

subject the present approach to an evaluation of its time complexity. This 

assessment encompasses both the real-world execution time and the theoretical 

time complexity of the algorithm, providing insights into its computational 

efficiency. The subsequent chapter will encapsulate the conclusions derived from 

this research endeavor and delineate potential trajectories for future exploration in 

this evolving domain. 
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CHAPTER-6 

6 CONCLUSIONS AND FUTURE DIRECTIONS 

Face recognition is a challenging task in video surveillance due to the presence 

of various unconstrained factors such as pose variation, occlusion, illumination, and 

low resolution. There is a need for continuous monitoring of CCTV footage to 

identify the individual in recordings of existing face recognition systems. The 

proposed recognition system helps concerned officials monitor the surveillance 

area without human intervention. It automatically alerts police officials when there 

is an identification of criminals in a specified area. It also helps to prevent crimes 

by providing clusters of crime-prone areas. Due to this, the police officials will 

become attentive before the crime happens in those areas. The extensive 

developments in face recognition in recent years have given immense scope to 

criminal identification and other applications. The emergence of deep learning has 

made recognition systems accurate, but it requires a large dataset for training the 

machine. The non-availability of a considerable number of images of criminals 

limits the accuracy of current systems. Therefore, the advocated solution given in 

the research work takes advantage of transfer learning and extracts features from 

the modified models trained on the ImageNet dataset that can be executed with less 

data. The designed HE-CNN model using modified pre-trained models is 

successfully validated on standard datasets and a self-curated dataset of mugshots. 

In this study, it became evident that the transfer learning approach surpasses 

conventional methods in terms of performance. The development of the proposed 

hybrid architecture, known as the HE-CNN model, for face recognition is based on 

extensive experimentation. Given the challenges associated with collecting a 

significant volume of face images due to privacy considerations, the present work 

offers an optimal solution through the implementation of deep ensemble transfer 

learning. The primary driving force behind this research was to design and develop an 

automated face recognition system based on ensemble deep learning methods with 
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superior accuracy and minimal complexity. This chapter highlights the major 

contributions aligned with the objectives of the research and discusses possible future 

research directions.   

6.1 Summary of the Thesis and Objective Attenuation 

In this thesis, we present an ensemble learning-based model to be applied to an 

automated face recognition system. We provided one self-curated dataset of 

mugshots to demonstrate the real-time application of the proposed research. For 

other researchers working in this field, we have made the dataset available in the 

public domain [235]. The main research objectives mentioned in Section 1.3 of 

Chapter 1 have been addressed in this thesis in the following order: 

The initial stage of face recognition systems involves face detection. In this 

context, we assessed four distinct algorithms: the Haar Feature-based cascade 

classifier (Viola Jones) and the Local Binary Pattern (LBP) Feature-based cascade 

classifier, as well as the MTCNN and SSD, which are both deep learning-based 

methods. These algorithms were evaluated for their effectiveness in detecting faces 

within video frames. During the evaluation, key metrics such as True Positive Rate 

(TPR), False Positive Rate (FPR), and False Negative Rate (FNR) were considered. 

The algorithm that exhibited the optimal balance of attributes, including fast 

execution time, higher TPR, and lower FPR and FNR, was selected to serve in the 

face detection phase within the system. Thus, the first sub-objective of this research 

work has been achieved.  

A hybrid ensemble CNN model (HE-CNN) is proposed for the recognition of 

an individual in a video frame. We modified the backbone architecture's last-level 

classification layer by replacing it with a linear combination of the concatenation 

of global average pooling and global max pooling. In our investigations, the 

maximum and average activations from the previous convolution are preserved, 

offering the model knowledge of both approaches and enhancing performance. 
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Furthermore, our model leveraged pre-trained models from the ImageNet dataset 

to extract features. This approach effectively mitigates the computational overhead 

and extensive data prerequisites associated with training the model entirely from 

scratch. The two-phase training process and the use of hyperparameter tuning help 

the proposed model achieve SOTA-competent accuracy on benchmark datasets. 

The evaluation of the proposed model is done using different evaluation parameters 

such as accuracy, recall, precision, error rate, and ROC curve. The proposed model 

achieved an accuracy of 99.35% in LFW, 91.58% in CPLFW, 99.63% in GT face, 

99.21% in YTF, and 95% in a self-curated dataset. Therefore, the second sub-

objective of this research work has been successfully attained. 

This research work introduced a system for alert generation designed to 

streamline the process of individual recognition, thereby reducing the need for 

extensive human involvement. This system initiates the transmission of alert emails 

and messages to the nearest registered police station. The identification of the 

nearest police station is achieved utilizing the Haversine formula, a method 

integrated into the implemented system. To facilitate further insights, the system 

also records the location coordinates of the recognized individual. This information 

is stored in a dedicated file, contributing to the establishment of clusters in areas 

where a higher frequency of target individuals has been identified. This approach 

has the potential to heighten the vigilance of law enforcement personnel in regions 

characterized by an elevated likelihood of criminal activity. Thus, the third sub-

objective of this research has been achieved. 

6.2 Research Future Directions 

The proposed HE-CNN model for face recognition provides better recognition 

accuracy than the baseline models due to the effectiveness of ensemble learning-

based models. However, the research presented here has a wider scope, with several 

extensions addressing a variety of challenges that require future attention, as is the 

case with many other academic articles in the same field. In the part that follows, 
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we go through some of these issues and suggest upcoming directions that, in our 

opinion, will have a significant influence.  

In this research, we utilized a single laptop camera operating at a refresh rate of 

60.02 Hz for individual recognition, and benchmark datasets used in the existing 

research were generated using one or more cameras. The diverse cameras with 

varying refresh rates can be used to establish the optimal refresh rate. This threshold 

identification aims to minimize data loss during the recognition process.  

The expansion of the self-curated dataset can involve procuring additional 

image samples for each class through free sources on the Internet. Alternatively, 

employing various data augmentation techniques, like elastic deformation to 

replicate distortions and stretches or introducing Gaussian noise, can aid the model 

in acquiring the ability to discern objects within noisy environments.  

It is essential to acknowledge a limitation of our system: it can identify 

individuals based on images presented in front of the camera, rendering it 

susceptible to spoofing. Therefore, an extension of our work could involve 

identifying spoofed faces to enhance security.  

To expand this study, the inclusion of other video datasets in the experimental 

evaluation could provide comprehensive insights.  

Additionally, opportunities for collaboration with government and law 

enforcement entities could lead to large-scale implementation of the research. 

In existing research, face recognition models are typically assessed through 

diverse metrics including accuracy, precision, recall, F1-score, and ROC curve. 

However, supplementing these evaluations with statistical analysis can fortify the 

research findings, facilitate hypothesis testing, and unveil hidden insights within 

the data. 

Furthermore, it is worth considering the incorporation of alternative biometric 

modalities or soft biometric characteristics as supplementary sources of data. This 
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approach can contribute to the development of face recognition systems that are 

both more dependable and precise, aligning better with the demands of real-world 

video surveillance applications. 
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