Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Computational Mathematics Program: Integrated B.Sc.-M.Sc. Mathematics Course Code: MATH 3049 No. of Pages: 03 Instructions: Answer all the questions.

Semester: VI Time: 03 hrs. Max. Marks: 100

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО					
Q 1	Using Modified Euler's method, obtain a solution of the equation $\frac{dy}{dx} = x + \sqrt{y} $ with initial condition $y(0) = 1$ for the range $0 \le x \le 0.4$ in steps of 0.2.	4	CO1					
Q 2	(a) Determine whether the following equation is elliptic or hyperbolic. $(x + 1)u_{xx} - 2(x + 2)u_{xy} + (x + 3)u_{yy} = 0.$ (b) In which parts of the (x, y) plane is the following equation elliptic? $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} + (x^2 + 4y^2) \frac{\partial^2 u}{\partial y^2} = 2\sin(xy).$	4	CO2					
Q 3	Define critical point and discuss the nature of the critical point of the following linear autonomous system: $\frac{dx}{dt} = -5x + y; \frac{dy}{dt} = x - 5y.$	4	CO3					
Q 4	Discuss the classification of Mathematical Models based on their nature. Also classify the following models: (i) $x(t + 1) = ax(t) - bx(t)y(t)$ y(t + 1) = -py(t) + qx(t)y(t) where $x(t)$ and $y(t)$ represent the populations of prey and predator species respectively. (ii) $\frac{dP_n}{dt} = \alpha P_{n-1}(t) - \beta P_{n+1}(t) - (\alpha + \beta)P_n(t); n = 1,2,3$ and $P_n(t)$ is the probability of <i>n</i> persons at time <i>t</i> .	4	CO4					
Q 5	Discuss the Linear Congruential method (LCM) for random number generation and using LCM, generate a sequence of 5 random numbers with $x_0 = 27$, $a = 17$, $c = 43$ and $m = 100$.	4	CO5					

	SECTION B				
	(4Qx10M= 40 Marks)				
Q 6	Solve the equation $y'' - x^2y' - 2xy = 1, y(0) = 1, y'(0) = 0$ to obtain $y'(0.1)$ using Runge-Kutta method of order 4.	10	CO1		
Q 7	Define Lyapunov's function and discuss Lyapunov's first method. Using the Lyapunov's first method, investigate the stability of the following system of equations: $\dot{x_1} = -3x_1 + x_2$ $\dot{x_2} = -x_1 - x_2 - x_2^3$.	10	CO3		
Q 8	Discuss population growth and decay models. A colony of bacteria grows according to the law of uninhibited growth $P(t) = 100 e^{0.045t}$ where P is measured in grams and t in days. Determine10(a) The initial number of bacteria. (b) The growth rate of the bacteria. (c) The population after 5 days. (d) The time taken for the population to reach 140 grams. (e) The doubling time for the population.10				
Q 9	Solve $\nabla^2 u = 0$ under the conditions $u(0, y) = 0$, $u(4, y) = 12 + y$, for $0 \le y \le 4$; $u(x, 0) = 3x$, $u(x, 4) = x^2$ for $0 \le x \le 4$ by taking h = k = 1. Perform one iteration of Liebmann's method by obtaining initial approximations using standard (or diagonal) five-point formulae. OR Solve $u_{xx} - 16u_t = 0$ under the given conditions $u(x, 0) = 0$, $u(0, t) = 0$ and $u(1, t) = 200t$. Compute u for one time step with $h = 0.25$.	10	CO2		
	SECTION-C (20x20M=40 Marks)	I	1		
Q 10	Discuss sign definiteness of scalar functions, matrices, and quadratic forms.				
	Using Lyapunov's direct method, discuss the stability of the system $\dot{x} = Ax$, where $A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$. Also find the corresponding Lyapunov function.	20	CO3		
Q 11	Discuss the Monte Carlo Simulation Technique and write the Monte Carlo algorithm to find the area enclosed by the curve $y = f(x)$ satisfying $0 \le f(x) \le M$ over the closed interval $a \le x \le b$ where M is a constant that bounds the function. OR A tourist car operator finds that during the past few months, the car's use has varied so much that the cost of maintaining the car varied considerably.	20	CO5		

Design a 41 a mart 200 1			<u> </u>	1	[
During the past 200 days, the demand for the car fluctuated as shown in the							
following table:							
	Trips per week	Frequency					
	0	16					
	1	24					
	2	30					
	3	60					
	4	40					
	5	30					
Simulate the demand							
numbers 82 96 18 96 20 84 56 11 52 and 03 Also find the Average							
demand ner week							
demand per week.					l		