Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Time Series and Forecasting Methods

Program: B. Sc. (Hons.) Mathematics

Course Code: MATH 3037P

Semester: VI Time: 03 hrs.

Max. Marks: 100

Instructions: Attempt all questions.

SECTION A
(50x4M=20Marks

				(:	5Qx4M=	20Mark	s)			
S. No.				•					Marks	CO
Q 1	Examine	whether	ether the Poisson process $\{X(t)\}$ is covariance stationary.						4	CO3
Q 2	Find the s	semi ave								
			20	ear O1	Produ 20					
			20		22					
		-	20		23					
		-		04	2:				4	CO1
		_	20		25					
		_	20		23					
		-	20		2'					
			20		24					
Q 3	Discuss the difference between AR (1) process and ARIMA process.								4	CO2
Q 4	Differentiate between seasonal variation and cyclical variation.							4	CO4	
Q 5	Define auto covariance for time series.						4	CO3		
					SECT	ION B				
				(4	Qx10M=	40 Mar	ks)			
	Calculate the five yearly moving average of the following data:									
Q 6	Year	1950	1951	1952	1953	1954	1955	1956	10	CO1
	Values	105	115	100	90	80	95	85		
	G:	-	. 11 17	1			()	T (ioV)		
0.7	Given a random variable Y with characteristic function $\varphi(\omega) = E(e^{i\omega Y})$							10	COA	
Q 7	and a random process defined by $X(t) = \cos{(\alpha t + Y)}$, show that $\{X(t)\}$ is stationary in the wide sense if $\varphi(1) = \varphi(2) = 0$.								10	CO2
0.8							0 = 0.			
Q 8	Find the r	nean and	ı variance	oi simp	ne randoi	n walk.			10	CO2

	Compute the trend by the method of moving averages assuming a 4-yearly cycle is present in the following series.								
	Year	1958	1959	1960	1961	1962	1963		
	Annual Value	54.0	40.5	47.0	48.5	42.9	42.1	10	CO3
Q 9	Year	1964	1965	1966	1967	1968			
	Annual Value	36.6	42.7	45.7	45.1	37.8			
	Consider the following auto regressive model of order 2, $X_t = \varphi_1 X_{t-1} + \varphi_2 X_{t-2} + Z_t$. For the following data set X_t : 3.91, 3.86, 3.81, 3.02, 2.62, 1.89, -1.13, -3.82, -5.08, -4.42. Use Yule-Walker equations to estimate the model.								
	the model	•		Sl	ECTION-	C			
				,	0M=40 M				
	Consider	a two-stat	e Markov	chain with	the transi	tion proba	bility matrix		
	$P = \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} \qquad 0 < a < 1, 0 < b < 1$								
Q 10	Assume that $a = 0.1$ and $b = 0.2$, and the initial distribution is								CO1
	Assume that $u = 0.1$ and $v = 0.2$, and the initial distribution is $P(X_0 = 0) = P(X_0 = 1) = 0.5.$								
	i) Find the distribution of X_n . ii) Find the distribution of X_n when $n \to \infty$.								
	The followard product.	wing tab	le gives tl	ne sales fi	gures for	a hundred	d units of a		
	Quarters								
	Year		I	II		П	IV		
	1982		36	34		38	32		CO4
	1983		38	48		52	42		
Q 11	1984		42	56		50	52	20	
V 11	1985		56	74		68	62		
	1986		82	90	8	38	80		
	Use least square method to form equation and compute the demand for the product for the quarter wise using ratio to trend method.								
	OR								

Compute seasonal indices from the following time series data using method of link relative:

Vaar/Ouatana	Quaterly output of coal for 4 years						
Year/Quaters	I	II	III	IV			
2001	65	58	56	61			
2002	68	63	63	67			
2003	70	59	56	52			
2004	60	55	51	58			