Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Structure Dynamics Program: B. Tech. AM&NT Course Code: MECH 3053

Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: Assume suitable right-handed coordinate system if it is not mentioned in problem.

SECTION A				
(5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Define the term <i>magnification factor</i> . How is the magnification factor related to the frequency ratio?	4	CO1	
Q 2	What is a normal mode shape? How is it computed?	4	CO1	
Q 3	What is the difference between the peak amplitude and the resonant amplitude?	4	C01	
Q 4	Will the force transmitted to the base of a spring-mounted machine decrease with the addition of damping? Explain it.	4	C01	
Q 5	Define the flexibility and stiffness influence coefficients. What is the relation between them?	4	CO1	
SECTION B				
(4Qx10M= 40 Marks)				
Q 6	A spring-mass-damper system is subjected to a harmonic force. The amplitude is found to be 20 mm at resonance and 10 mm at a frequency 0.75 times the resonant frequency. Determine the damping ratio of the system.	10	CO2	
Q 7	Drive the equation of motion of the system as shown in figure. Also, determine the natural frequency of the system.	10	CO2	
Q 8	A vibrating system consists of mass of 50 kg, a spring with a stiffness of 30 kN/m and a damper. The damping factor is 0.2 i.e. damping provided 20% of the critical damping. Determine, the a) critical damping	10	CO2	

coefficient b) lograthim decrement c) natural frequency of damped	1		
Q 9 Determine the eigenvalues and eigenvectors of a vibrating system for which, $\begin{bmatrix} m \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} k \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$ Or Determine the natural frequencies of the system shown below where $k_1 = k_2 = k_3 = k, m_1 = 2m, m_2 = 3m, \text{ and } m_3 = 2m.$	r 10	CO4	
SECTION-C (20x20M=40 Morks)			
Q 10 Determine the natural frequencies and mode shapes of a spring-mas system, as shown in figure, which is constrained to move in the vertical direction only. Take n=1. Also determine the initial conditions that need to be applied to the system shown as to make it vibrate in (a) the first mode, and (b) the second mode.	20	CO3	
Q 11 Determine the free-vibration response of the system shown in figure below with $k_1 = 30$, $k_2 = 5$, $k_3 = 0$, and $c_1 = c_2 = c_3 = 0$ for the initial conditions $x_1(0) = 1$, $x_2(0) = \dot{x}_1(0) = \dot{x}_2(0) = 0$	e 20	CO4	

