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ABSTRACT 

System Identification is the input /output model interface to develop a mathematical model 

in presence of noise, disruptions, etc. These random observations in terms of process and 

measurement noise are distorted due to sensors, and external disturbances. Handling imperfect 

measurements is simplified by evaluating the parameters of the system using statistical techniques. 

In the past years, system Identification has expanded its growth due to its application in designing 

controllers, health monitoring, and analysis of dynamic systems, making system fully autonomous, 

and fault-tolerant. Some of the traditional methods for linear systems in the frequency/ time domain 

are FFT, ML, and LS. System Id is applied to study the time-variant tracking behavior of vehicle 

subsystems in real time to update system modeling by parameter estimation in a continuous 

interval to detect sensor fault, and system failure  [1][2][3]. The research work displays the result 

of the aerodynamic parameters of Hansa-III evaluated by applying the Maximum Likelihood 

algorithm.  

Multiple numbers datasets were collected during the flight test of Hansa-III whereas, eight data 

sets were finalized for parameter estimation[10]. The Terminology HA resembles ‘Hansa-III’, L 

is Longitudinal, and numerals ‘1-8’ defines the number of data sets such as HAL1, HAL2, 

HAL3……. and so on. The Flight test was conducted by executing several control input forms 

such as Multi-step 3211 Input, Doublet Input, and Pulse Input. For longitudinal, the letter(s) 

accompanied by ‘L’ such as ‘M’ correspond to multi-step, ‘D’ as a doublet, and ‘P’ as pulse 

elevator control inputs.  

The result exhibited in form of non-dimensional derivatives using the Maximum 

Likelihood method are considerately accurate and the value of the larger number of datasets are 

found close to wind tunnel values as correct calibration of the sensors before the flight test is the 

necessary step that needs to be executed to acquire a good quality of flight data. File processing of 

generated data gives information that 𝐶𝐿α
, 𝐶𝑚α

, 𝐶𝑚δ e
, 𝐶𝐷0

, 𝐶𝑚0
, 𝐶𝑚q

are termed as strong 

derivatives whereas weak parameters 𝐶𝐿δ e
, 𝐶𝐿q

, 𝐶𝐷δ e
 affects in negligible amount as compared to 

strong so deviation in the value from wind-tunnel is neglected.   It is found that there is a maximum 

departure in the wind-tunnel values for the Pulse Input form when comparing with Multi-step and 
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Doublet therefore Multi-step Input is more appropriate among all three Input forms. The type of 

control input (Multi-step, Doublet or Pulse) influences the estimates negligibly if the control input 

is appropriately excited to generate the data with proper information and frequency contents. Once 

the values of strong and weak derivatives are estimated then the Validation process is exercised to 

validate the result of derivatives that came from the wind tunnel and Maximum Likelihood 

methodology. 

As system Identification expanded its application to design controllers thus the 

development of an autopilot for applications in defence, aerial surveillance, and transportation is 

a cause of to design of PID Controller. In the context of attitude controller design, the aircraft is 

modelled in longitudinal motion and the state-space matrix is formulated, and the PID controller 

is designed on MATLAB environment using Control System Toolbox satisfying design 

requirement. The time and frequency domain characteristics of different approaches such as Pole-

Placement, Root-Locus, and Linear Quadratic Regulator are compared to get fruitful results. The 

gain parameters are optimized by comparing closed-loop PID tuning approaches such as ZN, 

Modified ZN, Tyreus- luyben, Astrum- Haglund for pitch control. The solution of these tuning 

approaches is analysed in form of gains K p, K i, K d as The constant steady-state error is brought 

on by K p, which also improves steady-state tracking fidelity and lessens the system's sensitivity 

while parameter variation. K d refers to the system- stability but acquires poor steady-state 

feedback, and K I have the characteristic of good steady-state response but leads to system 

instability. The Transfer function of PID consists of two zeros in the numerator, one pole is located 

at the origin in the denominator which makes the overall system highly stable. The response of the 

tuning technique, Astrum -Haglund is undamped oscillatory motion as it does not contain a 

derivative filter that leads to system instability. The response of Tyreus-Luyben experiences the 

larger value of K d that influences overall system parameters thus aircraft stability is increased but 

the steady-state value is difficult to attain. The gain values of ZN and Modified ZN are compared 

and depict that both controllers approach steady state rapidly and features of stability but modified 

ZN exhibits the finest result as the controller satisfies design requirements and approaches steady 

state close to zero.  

The Design of the Flight control System involves classical and modern approaches. The 

simplest way to design a controller is using SISO (Single Input Single Output) Systems but systems 

applicable for industries are MIMO (Multi Input Multi Output), which are more complex[1] 
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[2].The foremost classical technique is Root-locus which solves control system performance by 

adjusting the location of closed-loop poles to attain system performance by varying system 

parameters as per the control design requirement applied. The Classical approach (Root-Locus) 

has certain limitations to SISO Systems whereas modern control techniques can be applied to 

MIMO time-variant, linear/ non-linear systems. The Pole-placement and Linear Quadratic 

Regulator are proposed for the estimation of the gain matrix. The Simulated results acquired using 

LQR and Pole-Placement are analysed and conclude that the settling time of the LQR Controller 

is 0.44s as compared to 3.08s for Pole-Placement and has the excellent feature of eliminating 

steady-state error to zero. The peak overshoot value gives information about deviated peak time 

response concerning the final one which is 0.332 which exemplifies that LQR provides more 

stability and deviates minutely.  Simulation results prove efficacious for the LQR approach used 

for designing the vigorous controller.  

 The study also investigates the problem statement connected to parameter estimation for 

the aircraft positioning systems subjected to inertial sensor measurements purveyed by Hansa-III 

aircraft. The Integration of the D.R algorithm in Hansa-III aircraft assists in estimating longitude, 

latitude, and altitude (θ, φ, h). The Dead Reckoning method determines the current position by 

utilizing the previously determined position over elapsed time on estimated speed. The research 

study incorporates the implementation of the navigational approach to estimate aircraft position. 

Dead- Reckoning is operated for cartesian coordinate estimation using real flight data and gives 

precise navigational details of aircraft at lost time signal connectivity. The results are validated 

with exponential smoothing in graphical/ tabulated form and summarize that percentage error of 

Latitude, Longitude is deemed to be very less that justifies the result dominantly. 
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NOTATION AND ABBREVIATIONS 

 

          Notation 

 

ax, ay, az Linear accelerations along x, y, z body axes (m/s2) 

€ Downwash 

CY Side force Coefficient 

E Error 

g acceleration due to gravity 

H Angular Momentum 

J Cost Function 

K β Scale Factor 

L, M, N Pitching, rolling, and Yawing moment 

M Net Moment 

m Mass of aircraft (kg) 

p, q, r roll, pitch, yaw rates (rad-s-1) 

R Measurement co-variance Matrix 

T Thrust 

u, v, w Longitudinal, lateral, and vertical airspeed 

V Airspeed (m/s) 

X, Y, Z Force acting toward flow direction, toward right wing, and 

underneath through it 

ʘ vector of unknown parameters 

α angle of attack  

β slide slip angle 
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Q Dynamic Pressure 

Δ Bias 

δa, δe, δr aileron, elevator, rudder deflection angle 

ζ Time delay 

ρ Air density 

Φ, θ, ψ angle of roll, pitch and yaw (degree) 

  Rate of roll, pitch, and yaw rate 

  Force acting toward Geographical North, Geographical East, and 

centre of the earth 

 Force acting relative to velocity vector, toward right wing, and 

underneath through it 

 Perturbed velocity along X, Y, and Z 

 Small perturbations along X, Y, and Z 

 Non-dimensional variation of pitching moment with pitch rate 

 
Non-dimensional variation of pitching moment with change in angle 

of attack 

 Non-dimensional variation of Z force with angle of attack 

 Non-dimensional variation of pitching moment with angle of attack 

 Frequency of short period 

 Damping ratio of short period 

 Frequency of Phugoid Motion 

 Damping ratio of Phugoid Motion 

 mean aerodynamic chord 

𝐼𝑋𝑋 , 𝐼𝑌𝑌, 𝐼𝑍𝑍 Moment of Inertia about x, y, z axes 

𝐼𝑋𝑌, 𝐼𝑋𝑍, 𝐼𝑌𝑍 Products of inertia in the XY, XZ and YZ plane, respectively, kg-m2 
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AOA Angle of attack 

ASCG Measured from center of gravity to accelerometer 

CFD 
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Computational Fluid Dynamics 

Center of gravity 

CS Control System 

DC Direct Current 

DLR Deutsche Forschungsanstalt fru && Luft- and Raumfahrt (German 

Aerospace Centre) 

DR Dead Reckoning 

EKF Extended Kalman Filter 

ES Exponential Smoothing 

FFT Fast Fourier Transformation 

FOPID Fractional Order PID Controller 

FPR Flight Path Reconstruction 

FSFC Full state feedback Controller 

GLONASS Global Navigation Satellite System 

GN Gauss Newton 

GPS Global Positioning System 

IMU Inertial Measurement Unit 

INS Inertial Navigation System 

LM Levenberg Marquardt 

LP Long Period 

LQR Linear Quadratic Regulator 

LS Least Square 
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Subscripts 

α, β,  𝛼̇, 𝛽̇ With respect to α, β,  𝛼̇ 
𝑏

2𝑉∞
 , 𝛽̇

𝑏

2𝑉∞
  

∞ Freestream 

f Fuselage 

M Mach number 

m Measured variables 

p, q, r With respect to 𝑝
𝑏
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MAC Mean Aerodynamic chord 

ML Maximum Likelihood 

MZN Modified Ziegler Nicholas 

NAL National Aerospace Laboratory 

NBCG Measured from center of gravity of aircraft to nose-boom 

ND Newton Difference 

NGN Neural Gauss Newton 

NLI Non-Linear Invariant 

NLO Non-linear Observer 

OAT Outside Air Temperature 

PID Proportional, Integral, Derivative  

QDR Quadrotor Dead Reckoning 

RCTA Research cum trainer aircraft 

SP Short Period 

TF Transfer Function 
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UAV Unmanned Aerial Vehicle 

XKF Exogeneous Kalman Filter 
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            Superscript 

 

         Longitudinal Stability and Control Derivatives  

 

𝐶𝐷0
 Coefficient of drag force at zero angle of attack 

𝐶𝐷𝛼
 Change in Coefficient of drag force with change in angle of attack 

𝐶𝐷𝛿𝑒
 

Change in Coefficient of drag force with change in elevator deflection 

angle 

𝐶𝐿𝑎
 Change in Coefficient of lift force with change in angle of attack 

𝐶𝐿0
 Coefficient of lift force at zero angle of attack 

𝐶𝐿𝑞
 Change in Coefficient of lift force with change in pitch rate 

𝐶𝐿𝛿𝑒
 Change in Coefficient of lift force with change in elevator deflection angle 

𝐶𝑚0
 Coefficient of pitching moment at zero angle of attack 

𝐶𝑚𝛼
 Change in Coefficient of pitching moment with change in angle of attack 

𝐶𝑚𝑞
 Change in Coefficient of pitching moment with change in pitch rate 

𝐶𝑚𝛿𝑒
 

Change in Coefficient of pitching moment with change in elevator 

deflection angle 

 

 

 

        . Derivative with respect to time 

~ Variable in frequency domain 



xxvii 
 

𝐶𝐷𝛼
  =  

𝜕𝐶𝐷

𝜕𝛼
                              

𝐶𝐷𝛿𝑒   =  
𝜕𝐶𝐷

𝜕𝛿𝑒
                                                

𝐶𝐿𝛼    =  
𝜕𝐶𝐿

𝜕𝛼
                                    

𝐶𝐿𝑞
   =

𝜕𝐶𝐿
𝜕(𝑞𝑐̅ /2𝑢)⁄    

𝐶𝐿𝛿𝑒   =  
𝜕𝐶𝐿

𝜕𝛿𝑒
                                      

𝐶𝑚𝛿𝑒  =     
𝜕𝐶𝑚

𝜕𝛿𝑒
                                               

𝐶𝑚𝛼   =  
𝜕𝐶𝑚

𝜕𝛼
                                      

𝐶𝑚𝑞  =  
𝜕𝐶𝑚

𝜕(𝑞𝑐̅ /2𝑢)⁄  



1 
 

 

 

CHAPTER 1 

INTRODUCTION 

 

Control Systems are an integral part of modernization. Enormous applications of 

control systems surround us in day-to-day life such as traffic control systems, rocket 

fire, the Lift-off of a space shuttle to Earth’s circle, and auto-guided vehicles 

transporting goods in aerospace assembly workspace glides along to reach their 

destination are some of the examples of an automatic control system. Based on 

these live examples, the research study aims to design, simulate, and develop the 

Control system and navigation of trainer aircraft Hansa-III based on a six degrees 

of freedom linear dynamic model using a maximum likelihood algorithm for 

estimating aerodynamic derivatives. Developing a mathematical model is a key 

parameter required for designing a control system.  Aircraft system identification 

applies to engineering systems like aerospace vehicles to develop a mathematical 

model of the system. System identification was first defined by Zadeh stated, 

“Identification is a tool to identify systems on the basis of Inputs, outputs, and test 

conditions which is elaborately discussed in the next section(Roudbari & Saghafi, 

2016) 

1.1 AIRCRAFT SYSTEM IDENTIFICATION 

The input-output model interface for developing the mathematical model in the 

existence of noise and disruptions is known as System Identification. In Layman’s 

Understanding, System Identification is identifying parameters of the physical 

system subjected to observations to develop a mathematical model for the system. 
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General System Identification: The basic elements to define Identification 

problems include 

 

(a) Input to experiment behaviour of the physical system in the form of 

Maneuverers 

(b) Mathematical Model of the physical system 

(c) Responses in terms of Measurement            

(d) Methodology adopted to define system Identification 

 

 

Fig 1.1: Concept of System Identification 

 

The German Aerospace Centre (DLR) developed the Quad M by outlining five 

components that are essential to understanding System Identification as presented 

in Fig 1.1 (Hamel, 2019)(Hamel & Jategaonkar, 1996a) 

Maneuverers: Control inputs are fed into system dynamics to experience the 

consequences despite output. 
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Measurement: High-quality sensors are used to evaluate the system's process and 

measurement noise, also known as a data compatibility check. 

Model:  It consists of mathematical equations based on the Newtonian law of 

motion. The Linear and non-linear models are used for flight vehicle system 

Identification. 

Methodology:  It is based on the Input/output interface and used for the time and 

frequency domain. 

Validation:  It defines testing, measuring, executing, and validating physical 

systems. It identifies whether the model meets desired expectations or not.   

Approaches to System Identification 

System Identification is classified on the basis of model class and model 

structure(Hoffer et al., 2013) 

1. The model class  

(i) Linear/ Non-linear (ii) Parametric/ Non-parametric 

Linear Models are simpler and more flexible for stochastic dynamics as well as 

the convergence of the physical system is guaranteed whereas the Non-linear 

model requires enough computations with no guarantee of convergence. Linear 

approximation is helpful for robust control design as Linear models give 

continuous responses to system parameters and give a better understanding to 

predict complex system behaviour. The system modelling is improved by 

linearized approximation thus linear modelling is advisable. Recent technology 

advancements expedite the more often usage in parameter estimation areas such 

as designing controls and autopilots, handling fault-tolerant issues, expanding the 

v-n curve, monitoring system health, and contrasting wind tunnel test results with 

analytical techniques like CFD (Computational Fluid Dynamics). 
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Parametric Identification techniques include the least-square, maximum 

likelihood methodology to identify model parameters, referred to as black-box 

modelling(Leontaritis & Billings, 1985)(Jameson & Cooke, 2012a). Non-

Parametric identification techniques include neural networks and genetic 

algorithms and they do not require postulates to assume a model structure. These 

models are used to gain knowledge of model complexity and model 

validation(Juang & Suzuki, 1986)     

2. The model Structure 

(i) Black box (ii) Grey box (iii) user-defined model  

The Black-box model assumes an unknown system and model parameters don’t 

have constraints. Grey-box model assumes that some of the system-related 

information is known and parameters have constraints. User-defined model is a 

generic user-defined model using an input/ output interface. 

Vehicle categorization is correlated and captures one aspect of system 

identification at one time on the basis of model class and structure(Roudbari & 

Saghafi, 2016)(Hardier & Bucharles, 2010)(Tischler & Remple, 2006) 

General Attributes of System Identification are  

(i) Cost-effective 

(ii) Self-governing System  

(iii) Elimination of Random/Systematic error   

 

1.2 AIRCRAFT CONTROLLER DESIGN 

In terms of multi-rotor drones, flying cars, and hybrid airships, aerospace 

technology is expanding rapidly. In the context of automatic control design, it has 

played a crucial role as a catalyst by encouraging the researcher’s interest in areas 

such as reconnaissance missions, terrain surveillance, aerial photography, etc. An 

autopilot alleviates pilot tasks during innumerable flight regimes and handles 
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adverse weather conditions to provide stability. The controller design requires 

comprehensive expertise in control theory, parameter estimation(R. Kumar, 2012) 

(Harper & Cooper, 1986), and flying handling quality. An enormous PID tuning 

approach to optimize gain values of the controller such as Ziegler Nicholas, 

Astrom-Haglund, Modified Ziegler Nicholas, and Tyreus-Luyben are used to 

study time domain characteristics as discussed by (Deepa & Sudha, 

2016)(JAISWAL & PRAKASH, 2022). Modern approaches such as Pole-

Placement, and LQR to design the Pitch controller of Hansa-III aircraft are 

discussed elaborately in chapter 5 of the thesis.  

1.3 AIRCRAFT NAVIGATION SYSTEM 

The evolution of research in the discipline of Navigation is always captivating as 

it is applied to detect orientation, exact position, and velocity. The research study 

inspects the problem statement for aircraft positioning systems depending on 

inertial sensor measurement apportioned by Hansa-III. The dead Reckoning 

approach measures position once GPS is not functional as suggested by M. 

Jayachandran thus D.R. algorithm is accomplished within the aircraft display 

system which acquires position information, and attitude(Jayachandran et al., 

2009). The numerous applications of Dead Reckoning are surveillance, mobile 

robots, marine navigation, aircraft navigation, and automotive navigation. Pure 

D.R. technique is cheaper, economical, and causes systematic error thus pure D.R. 

technique is not applied where accurate position, radio-signal-based navigation is 

required. INS is integrated with dead reckoning equipment to provide accurate, 

reliable navigation results.  

1.4 RESEARCH MOTIVATION 

 

An enormous amount of work in the area of parameter estimation using various 

methodologies like Output error method (OEM), Filter error method (FEM), and 

Equation error method (EEM) had been accomplished for Hansa-III aircraft but 

there is a clear research gap when it comes to design a controller to make the 
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system fully autonomous so that it can be utilized for training pilots, analysis of 

dynamic systems, research-oriented activities, fault-tolerant system, accidental 

investigation. 

No research is carried out for Hansa-III in terms of navigation henceforth, the dead 

reckoning navigational technique will be implemented to study the attitude, and 

orientation of the system so that it can be used for surveillance in terrain-prone 

areas, aerial photography, monitoring of floods/droughts. 

Designing an auto-controller, and integrating a novel navigational approach using 

parameter estimation of Hansa-III motivates to perpetrate research in this area.  

 

1.5 RESEARCH OBJECTIVES AND METHODOLOGY 

Research Objectives 

1. Estimation of longitudinal stability and control derivatives from real flight 
data of Hansa-III aircraft using Output Error Method 

2. Design of PID Controller for aircraft pitch control, analyzing stability and 

performance characteristics for hardware implementation 

3. Integration of Dead Reckoning approach to estimate the expected position 

of Hansa-III Aircraft 
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Methodology:  

The methodology proposed for this study is discussed in form of a flow-chart: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.2 Flowchart Representation of Methodology 

DATA COLLECTION 
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1.6 CHAPTER SCHEME 

The thesis comprises Seven Chapters which are outlined as: 

 Chapter 1 The first chapter contains the overview of Aircraft parameter 

Estimation, Control Design Approaches, Aircraft Navigation System, 

research motivation, objectives, modelling tools, and research summary 

Chapter 2 covers the literature survey of the attitude control system, aircraft 

system Identification, modelling, simulation, and dead reckoning method, 

design of the pitch control system. 

Chapter 3 discusses the classification and categories of aircraft and a brief 

description of model specifications. 

Chapter 4 discusses the procedure of Parameter Estimation, file processing, 

Data compatibility check, Mathematical modelling, and Maximum 

Likelihood Technique for the estimation of longitudinal derivative. 

Chapter 5 briefly presents aircraft stability and control, automatic control 

system, Reference frame, Linearized equation of motion, state-space matrix 

representation for controller design, PID Controller Design, Tuning PID 

parameters using ZN, AH, MZN, TL techniques, Controller design using 

Root-Locus, pole-placement, LQR approach and comparing results using 

Simulation 

Chapter 6 presents an estimation of navigational parameters (latitude, 

longitude, altitude) using Dead Reckoning, a Comparison of results using 

exponential smoothing, and the Newton-difference method. 

Chapter 7 discusses the conclusion derived from the three objectives and a 

brief scope for future work is identified to extend the research study. Lastly, 

references in the form of the research paper, technical report, book, and 

chapters are referred to in the thesis. 
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SUMMARY: 

In this chapter, we discussed the concepts of aircraft system Identification, aircraft 

controller design, and aircraft navigation system. Additionally, the research 

motivation for choosing the topic, research objectives, and methodology are also 

presented. The chapter scheme covers topics such as Introduction, Literature 

Review, Aircraft Model Specifications, Aircraft Parameter Estimation, Aircraft 

Controller Design, Aircraft Navigation System, conclusion, and scope for future 

work. 
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CHAPTER -2 

LITERATURE SURVEY 

 

System Identification is a scientific discipline to identify the model based on the 

Input/ output observations. Parameter Estimation is an extremely formidable, 

extensively applied example of system Identification that estimates the attributes of 

a dynamic system based on conceptualization consideration of the mathematical 

model (Hamel, 1979)(Iliff, 1989). The task of best estimate determination is known 

as parameter estimation. A lot of research has been conducted in the area of 

parameter estimation of Hansa-III. The current technological advancement reflects 

the gap between automation and to design attitude controller of Hansa-III. The 

research study aims to design a controller by implementing a statistical output error 

approach to estimate the expected position of Hansa-III. To intervene in the gap, 

the autonomous controller integrated with the dead Reckoning algorithm to 

estimate navigational parameters is designed.  

The Literature is reviewed in three different sections a) Parameter Estimation, b) 

Controller Design, and c) Aircraft Navigation as Dead Reckoning 

2.1 PARAMETER ESTIMATION 

The task of best estimate determination is known as parameter estimation. The 

successful application is due to fine data processing handling capability, better- 

measuring techniques, and appropriate flight-test for adequate aerodynamic 

modelling (Hamel, 1979)(Klein, 1989)
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Bryan discussed the adequacy of modelling forces and moments and validated the 

mathematical model. The author introduces aerodynamic modelling that includes 

the relationship of forces and moments about an axis respectively. The aerodynamic 

model is in the form of Taylor series expansion such as  

𝐶𝑗 = ∑
𝜕𝐶𝑗

𝜕𝜎
𝑗

𝜎 + ∑
𝜕𝐶𝑗

𝜕𝑢
𝑗

𝑢 

Where j stands for rolling, pitching, and yawing moment (l, m, and n), X, Y, and Z 

forces in X, Y, and Z direction, 𝜎 as motion variables airspeed, angle of attack, 

side-slip angle, and u as control input(Bryan, 1911). 

E. Seckel, J. Morris, and R. D. Finck stated aerodynamic parameters are estimated 

using three different approaches at the early stage of aircraft design such as wind-

tunnel Testing Method, Flight test, and analytical method. Among all the three 

modes, the analytical method was the convenient process of estimating parameters 

but the accuracy is low to attain thus results obtained from the analytical need to be 

validated from wind-tunnel and flight tests [21]- [22] 

Hamel, P. G., and Jategaonkar, R. V., discussed the theory and evolution of system 

Identification of various flight vehicles in chronological order. The author also 

determined the damping ratio and frequency from flight data as well as applications 

in the area of system Identification(Hamel & Jategaonkar, 1996b). 

K.W. Iliff, Hamel, and Jategaonkar stated Maximum Likelihood has been 

successfully used to flight data for parameter estimation. The acknowledged 

standard approach for estimating an aircraft's stability and control derivatives uses 

ML with process noise and measurement noise. (Hamel & Jategaonkar, 

1996a)(Iliff, 1989) (Jategaonkar, 2015)  

Hamel, Jategaonkar, Maine and Iliff covered a broader aspect of output error as its 

applicability has been extended to the non-linear system. The most applicable 
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version of Maximum Likelihood: its advantages and properties are discussed 

elaborately(Hamel & Jategaonkar, 1996a)(Maine & Iliff, 1986) (Hamel, 1979) 

Klein addressed linear regression for model determination, the applicability of ML 

in the frequency domain and time domain, and data compatibility. The parameter 

estimation techniques at different flying regimes, and unsteady, unstable aircraft 

conditions were also addressed by the author(Klein, 1989). 

D. Kuehme, N. R. Alley, C. Phillips, B. Cogan, E. A. Morelli and J. A. Grauer 

discussed OEM, FEM, EEM, EKF, Regression analysis in the time domain for 

parametric identification as this methodology describes a correlation between flight 

test-bed data and linear model(Kuehme et al., 2014) used this technique to study 

longitudinal, lateral Stability, control, and damping coefficients of PTERA research 

aircraft using SI Toolbox SIDPAC. The disadvantages of the time domain led to 

the introduction of the concept of a frequency domain. FFT is a method for analysis 

that changes the domain from time to frequency as the convergence rate is faster, 

handles control design problems easily, robustness to noise (Morelli & Grauer, 

2020) 

R. Jategoankar, states that there are three categories for parameter estimation: 

equation error method (EEM), output error method (OEM), and filter error 

technique (FEM)stated parameter estimation is categorized into three types: 

equation error method (EEM), output error method (OEM), filter error method 

(FEM) [8]. The equation error method defines a class as the Least square method 

which defines the cost function. Using the output error method, the error is reduced 

that occurs between the system output variable and the system predicted variable. 

(Jategaonkar, 2015) 

Peyada et.al addressed parameter estimation methods in terms of process and 

measurement noise. Traditional methods: EEM cannot handle process and 

measurement noise, OEM handles measurement noise, and both process and 

measurement noise are handled by FEM from flight data. The research article also 
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uses GN and LM optimization   techniques in estimating the parameters of Hansa-

III(Peyada et al., 2008) 

R. Kumar discussed the estimation of derivatives for highly maneuverable, 

unsteady, unstable aircraft at a high angle of attack. This motivates researchers to 

study in this field as special efforts are required to meet the challenges involved in 

non-linear model identification. The author successfully estimated the parameters 

of Hansa-III near stall region using Maximum Likelihood. This method is widely 

applicable in time-domain analysis to estimate derivatives using flight data of the 

vehicle. Maximum Likelihood is a widely used statistical technique to minimize 

the error and make the system dynamically stable. The author estimated the lateral-

directional parameters of Hansa-III using a conventional approach such as Least-

square, Maximum Likelihood, and Neural Technique as Neural Gauss-Newton. 

The background information of both approaches is discussed as well and variations 

of the effect of the type of control inputs are also highlighted in the article 

(Jategaonkar, 2015)(R. Kumar & Ghosh, 2014) 

 

Grauer discussed the estimation of aerodynamic derivatives using the filter error 

method (FEM), of a non-linear aircraft model in consideration of turbulence effects. 

Results were simulated with NASA’s generic aircraft Transport model. Time and 

frequency domain approaches were used to demonstrate the effectiveness of the 

approach. This paper explains how to solve real-time data compatibility problems. 

Data compatibility is a part of parameter estimation and is used to check data 

accuracy by making bias-free and error-free flight data(Grauer, 2015) 

 

E. T. C. Kim explained that M.L.E.M was implemented to estimate the stability 

and control derivative of a 4-seater canard aircraft, firefly. This methodology has 

benefits that measure both process and measurement noise. Results from 

DATCOM and CFD were compared to those from a wind tunnel.(Kim et al., 2015) 

C. Gottlicher, discussed optimal control methodology is operated for parameter 

estimation of the dynamic model utilizing Cost function ‘J’ that is derived by using 
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OEM. Estimated results are compared with the least square method to get the 

optimum result.(Göttlicher et al., 2016) 

 R. K Chauhan and S. Singh, reviewed the applicability and background 

information of various parameter estimation techniques such as OEM, FEM, EEM, 

and ANN. Techniques like Modified delta, delta, and ML were also successfully 

reviewed. Results are compared based on the critical review of the research 

work.(Chauhan & Singh, 2018) 

 

S. Sadrela, R. Dhayalan et.al, discussed longitudinal, lateral-directional 

characteristics of CDRW-based UAV. The mathematical model of UAVs is 

formulated and a kinematic consistency check of real flight data is performed. 

Various techniques like Neural Gauss Newton (NGN), ML, and LS were 

implemented to obtain weak and strong derivatives of UAV(Saderla et al., 2019). 

 

 H.O. Verma and N.K. Peyada, estimated stability and control derivatives using the  

classical estimation approach ML, and LS. The author discussed ANN as an 

alternative approach to the stall condition of an aircraft. The efficacy of the Extreme 

learning machine method in terms of standard deviation such as Gauss Newton is 

validated with Maximum Likelihood(Verma & Peyada, 2021) 

 

R. Jaiswal, O.  Prakash, and S. Chaturvedi, “A Preliminary Study of Parameter 

Estimation for Fixed Wing Aircraft and High Endurability Parafoil Aerial Vehicle” 

2022 discussed ML as the best tool to define output error method. This 

methodology is highly efficient when the sample size is large but inefficient in 

handling process noise. This statistical technique is not used for non-linear dynamic 

systems and noisy environmental interruptions (Jaiswal et al., 2020)(R. Kumar, 

2012) 
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2.2 AIRCRAFT CONTROLLER DESIGN 

The attitude control design requires a suitable controller to fulfil the required needs. 

The theory of modern control plays a vital role in the robust control system. This 

type of robust method such as Linear Quadratic Regulator deals with non-linearity 

and uncertainty without affecting system performance. The traditional control 

approach makes trade-offs amidst robustness and performance. Many research 

problems are solved using the same technique that results in optimal performance. 

A lot of research has already conducted to intervene in the gap between traditional 

and modern methodology.  

E.H.J Pallet explained the principle of aircraft stability and control, fundamental of 

aerodynamics. The longitudinal motion modes, including long-period and short-

period modes, are thoroughly described. (Pallett, 1954)  

Jefferey D. Robinson discussed LQR Technique to locate poles precisely for an 

optimal solution. The author developed the LQR algorithm by minimizing the value 

of cost-function J and choosing Q, R scaler weighs wisely(Robinson, 1991) 

R.C. Nelson discussed aircraft equation of motion. The author also reviewed the 

basic principle of aircraft stability and control along with auto-pilot design. For 

designing the pitch attitude control system, time and frequency domain design 

requirements were discussed. The comparative study of classical and modern 

control methods was also briefed (Nelson, 1989) 

Krishnaswamy Srinivasan presented pole-placement and LQR technique for 

estimation of state-feedback gain matrix k. The state and observer estimation were 

explained thoroughly(Srinivasan, 2006) 

Wahid. N, Hassan, et al proposed two methodologies PID and fuzzy logic PID to 

control aircraft Pitch angle. The mathematical model of aircraft is developed and 

implemented in the Simulink environment. The results were compared in the form 
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of time-domain characteristics and fuzzy PID proved to produce the best optimal 

solution(Wahid & Hassan, 2012). 

Yibo Li, et al, discussed the LQR method for designing the control law of the 

Longitudinal stability Augmentation System of UAVs. The control law is designed 

using output feedback (Yibo Li, Chao Chen, n.d.) 

Mohammad Shahrokhi and Alireza Zomorodi, present a comparative assessment of 

various open-loop and closed-loop tuning methods. The techniques are analyzed 

for Single Input Single Output Systems to get the optimized value of gains KP, KI, 

and KD(Mohammad Shahrokhi and Alireza Zomorrodi, 2005) 

Amir Torabi, et al, compared performances of classical and modern control 

approaches for aircraft pitch attitude control systems. The performances of fuzzy 

logic, PID, and LQR Controllers were compared to get an optimal solution (Torabi 

et al., 2021) 

Khoi Niguen Dang, optimized the design of the attitude controller of the quad-rotor 

using a system Identification approach. LQR theory was used to design Linear 

quality servos to improve performance characteristics (Dang et al., 2015) 

 

Deepa and Sudha discussed a mathematical model for pitch control of general 

aviation aircraft and designed a PID Controller by tuning PID parameters with 

Ziegler Nicholas, Modified Ziegler Nicholas, Tyreus-Luyben, and Astrum- 

Haglund approaches. Results in the form of Time-domain specifications of 

different tuning techniques are compared. ZN proved to be better in all terms and 

conditions(Deepa & Sudha, 2016) 

Amlan Basu, et al, focus on designing PID and FOPID Controller using tuning 

techniques like Ziegler Nicholas, Astrum-Hagglund, Cohen-Coon, and CHR. The 

fundamental of each method is discussed and well explained in the form of a step 

response (Basu et al., 2016) 
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Tamayo used UAV as a platform that aims to study all three aircraft parameters 

such as system Identification, control, and navigation. Eigenvalues of the non-

linear model are linearized using linearization theory to study dynamic 

performances(Basu et al., 2016) 

Joao P. Hespanha, discussed state-space representation, state-feedback design, 

controllability, observability, and optimal control methods. This book aims to 

provide background information for modern design techniques(Jo & December, 

2017) 

Valderrama, designed an aircraft pitch controller to improve the stability and 

performance of UAVs. Ziegler Nicholas methodology was adopted to tune the PID 

controller. Various time domain performances to study the performance of the 

controller were discussed (Villarreal-Valderrama et al., 2019) 

W. Ahmed designed a longitudinal autopilot for altitude and pitch control. He 

designed multi-loop configurations using eigen-structure Assignment (EA) and 

PID. The inner loop is configured by EA for stability and the PID Controller is used 

to design the outer loop for controlling altitude and pitch Control. (W. Ahmed, Z.Li, 

2019) 

M. Raja and Om Prakash discussed the satellite attitude control system. The PD- 

compensated controller to meet design specifications using the root-locus algorithm 

is constructed using the control system toolbox. Time-domain characteristic of the 

satellite is discussed elaborately (Raja & Prakash, 2020) 

 

2.3 AIRCRAFT NAVIGATION SYSTEM 

Aircraft Navigation System as Dead Reckoning 

 The theory investigates the problem statement related to parameter estimation for 

aircraft positioning systems based on Inertial sensor measurements provided by 

flight test of Hansa-III aircraft. In terrain-prone, steep places, some satellite-based 
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signal transmission techniques, such as (GNSS), cannot be used; as a result, the 

Dead Reckoning method is used to make precise future predictions. 

Philips G Mattos discussed the implementation of an algorithm describing GPS and 

DR. The drift issues caused by unaided GPS, unaided DR, coupled GPS, and DR 

are explained. Integrated GPS (global positioning satellite) and DR (Dead 

Reckoning) sensors are used to track and navigate low-cost vehicles. Results for 

GPS, DR with a loosly coupled, and DR with a tight coupled were compared and 

discussed. Tightly coupled DR gives the best optimum result as compared with all 

three (G.Mattos, 1994) 

Zeev Berman. et al, discussed future aspects of the aviation navigation systems such 

as the dead reckoning system. The author discussed background information on 

Dead Reckoning and Inertial sensors. Different configurations of aviation 

navigation systems are discussed. He presented an actual statistical model and 

varied wind vectors to match actual data. To quantify horizontal positional 

inaccuracy, the Dead Reckoning system, standalone inertial sensors, and inertial 

sensors integrated with the DR system were compared. (Berman, 1998) 

M. Jayachandran, presented a dead-Reckoning approach using Inertial sensors for 

position estimation at the time GPS drops out. When GPS is not working, the 

method is useful for navigation. A Navigational algorithm is implemented within 

the display system of aircraft that receives information about attitude, and position 

(Jayachandran et al., 2009)  

G. S. Reddy presented various advanced navigational systems varying from 

satellite to archaic forms for the application of aircraft. This study investigates 

various navigation systems to enhance system’s accuracy as the accuracy range for 

the type of military application is the major concern of systems. The research 

concentrates on a gyro-based inertial navigation system to increase the system’s 

accuracy. Integration of the INS-GPS-GLONASS system is applied for combat 

aircraft, ships, and long-range missiles (Reddy & Saraswat, 2013) 
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Lorenzo, experimented with the dead reckoning of UAV using XKF (Exogeneous 

Kalman filter) and NLO (Non-linear observer) IMU sensors such as (acceleration, 

rate gyros, an inclinometer); and altimeter; the camera is used. Position, velocity, 

and altitude are used as observed states. XKF gives the best optimum result as 

compared with NLO. The result of calculated velocity comprises a bias effect. 

Biases of various sensors such as accelerometers, gyroscopes, and optical flow 

velocity are also estimated up till the availability of GNSS (Fusini et al., 2017) 

Parinaz Kasebzadeh covered broader aspects of parameter estimation for 

applications of mobile positioning. The navigational parameters such as position 

using the PDR of mobile robots were estimated. The PDR algorithm was designed 

to get more accurate gait parameters which will improve the accuracy of the 

position estimate. The Pedestrian Dead Reckoning algorithm is developed for the 

mobile position. Various cases of positioning algorithms are discussed and the 

drawbacks are mitigated using a model-based sensor fusion technique 

(Kasebzadeh, 2017) 

T. Mahmoud discussed the benefits as well as drawbacks of integrating the  INS 

system with GPS. The specification of the system varies in accuracy, reliability, 

update rate, budget, size, and mass. The study investigates the performance of 

INS/GPS systems and different algorithms. INS is integrated with dead 

reckoning equipment to provide accurate, reliable navigation results. This study 

investigates the performances of loose couple INS/ GPS, tightly coupled 

INS/GPS, and INS using SIMULINK. Tightly coupled INS/GPS gives better 

performance than loosely coupled integration (Mahmoud & Trilaksono, 2018) 

Pedro Paulo Liborio Lima do Nascimento, discussed the alternative procedure of 

estimating navigation coordinates once GPS systems are inaccurate, unavailable in 

tunnels, dense and terrain-prone areas. The author integrated the dead reckoning 

algorithm with a GDOP (Geometric Dilution of precision) based positioning 

solution. The simulated results in term of root mean square error are compared to 
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stand-alone GPS, GPS +DR. The error was reduced from 97%- 98% to 83%-

88%(Do Nascimento et al., 2018) 

 

I.K. A. Shurin, The research used quadrotors for applications both indoors and 

outdoors such as surveillance, mapping, and transportation. The fusion of accurate 

navigation systems such as INS/GNSS is required to accomplish the task. 

Environmental Constraints lead to drift in time in the navigation solution thus 

pedestrian dead reckoning is mitigated in pure Inertial Navigation. It enables the 

quadrotor to estimate the distance from peak to peak. The simulated result shows 

the accuracy of the navigation solution while comparing INS and QDR approaches. 

QDR navigation solution is bounded while the INS solution diverges (Shurin & 

Klein, 2020) 

Piotr Lichota presents an aircraft controller design procedure for tracking aircraft 

trajectory. The study used Maximum Likelihood and Extended Kalman filter 

estimation techniques to identify parameters and obtain a mathematical model of a 

non-linear transport aircraft model.  The Linear Quadratic Regulator approach is 

used to design a controller for accurate aircraft tracking trajectory. It is found that 

tracking error is proportional to wind velocity in the  presence of wind  proportional 

to turbulence intensity in the presence of turbulence and admissible for small-

moderate disturbances (Lichota et al., 2020) 

 

Omri Asraf, Firas Shama, and Itzik Klein, the study suggested PDR Net, a deep-

learning version of pedestrian dead reckoning that can be used for user positioning. 

In the study, distance regression and changing heading angles are used to identify 

smartphone locations. Indoor navigation is a good application for the PDR 

technique. Experimental Results display proposed methodology outperforms the 

traditional one (Asraf et al., 2022) 
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SUMMARY 

This chapter entrusts a literature survey on Parameter Estimation, Controller 

design, and Navigation. Based on the study, it was observed that the M.L technique 

is applied to the flight data in the time-domain for the estimation of parameters. It 

is the standard approach for the estimation of derivatives of an aircraft and has 

capability of handling measurement noise too. Once the ML technique is applied to 

estimate the parameters, the methodology adopted to design attitude controller on 

the basis of the  research study is LQR. This robust method deals with optimal 

problems by concentrating on design requirements without sacrificing its 

performance. Some surveys in term of aircraft navigation system observed signal 

transmission methods such as GNSS is not able to forecast future information at 

the time of signal loss thus Dead Reckoning methodology can be used for future 

prediction. 
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CHAPTER- 3 

AIRCRAFT SPECIFICATIONS 

 

 

The study addresses the classification of aircraft as lighter than air/ heavier than air 

machines. The stratification of the aeroplane as Military, Commercial, Transport, 

and Trainer is discussed as a research study focalized on the research cum trainer 

aircraft- Hansa-III. It is a fully composite, low-wing configuration, tricycle landing 

gear, and two-seater aircraft. The drawing as shown in Figure 3.3 illustrates the 

characteristics of the model concerned. The general features and specifications are 

mentioned in the below section  

3.1 AIRCRAFT 

The generic term “Aircraft” includes all man-made machines flying in the air for 

example kites, parachutes, helicopters, aero-planes, rockets, missiles, airships, 

gliders, auto-gyro, hybrid aerial vehicles, etc. An aeroplane is an aircraft but the 

reverse of it is not always the same. Fixed wing heavier than aerial machines 

includes an aero-plane which stands for vehicles that fly in the air and are propelled 

forward by jet engines to produce thrust. Aircraft are broadly classified as displayed 

in Figure 3.1: 

CLASSIFICATION 

 AIRCRAFT 

LIGHTER THAN 

AIR 

HEAVIER THAN 

AIR 

AIRSHIP BALLOON 
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ORNITHOPTER 

ROTARY WING 

ROCKET & MISSILE 

FIXED WING 

PARAFOIL VEHICLE 

HEAVIER THAN 

AIR 

HEAVIER THAN 

AIR 
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                           Helicopter                                                  Aeroplane         

 

Fig 3.1 Aircraft Classification(Devalla & Prakash, 2014)(R. Kumar & Ghosh, 

2015)(Kornienko & Well, 2003)(Heredia & Ollero, 2009)(Ramesh et al., 

2020)(SPACE India, 1988) 

 

Lighter than Air: 

A man-made vehicle that flies in the air and produces thrust on its own to 

move forward without an engine falls under this class. The aerodynamic 

force (lift) is always greater than its weight which helps this class of 

vehicles to fly in the air. These systems include balloons, dirigibles, and 

blimps, often used for surveillance, monitoring natural calamities, and 

advertisement as shown in Figure 3.1 

Balloons: 

Montgolfier brothers were the first individuals who succeeded in placing 

the man-made object “Balloon” in the air in 1782 (SABHARWAL, 2003). 

It consists inflated bag with a gondola attached by ropes. It is difficult to 

control the flight as it moves in the wind direction. 

Airship: 
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Controlled balloons with non-rigid structures often referred to as dirigibles 

consist of a gondola and an inflated bag with an engine and propeller. 

Horizontal tail fins with movable rudder are attached in dirigibles termed 

airship which is used for movement in upward, downward, left, and right 

direction. Henry Gifford’s airship on 24 September 1852 was the first 

airship144 feet long, with a diameter of 39(SABHARWAL, 2003).  feet 

flew in the air. Rigid airships called zeppelins include a framework of steel 

and aluminium with a long cylinder of the nose and pointed tail. The first 

ever-built, biggest hydrogen-filled airship ‘Hidenberg’ is 803 feet long, 

135 feet in diameter with a space of 70 passengers (SABHARWAL, 2003). 

These machines are often used for surveillance, and advertisement due to 

excellent endurability, and durability. 

Blimps: 

 Non-rigid small airships fall in this class of vehicle. Blimps are used for 

advertisement and submarine patrols. 

Heavier than Air: 

Machines that fly in the air and are propelled forward by jet engines to 

produce thrust falls under this category. It comprises ornithopters, rockets 

and missiles, parafoil aerial vehicles, multi-copters, and airplanes as 

referred to in Fig 3.1 

Missile: 

 Missiles are heavy-range guided weapons that possess the capability of 

self-ignition for damage on the selected target. 

Ornithopter: 

 The hovering of insects and birds inspired to generate the concept of a 

flapping machine termed an Ornithopter. Flapping flight has two classes- 
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bird and Insect(Ansari et al., 2006). Bird is useful for indoor application 

and too fast in forward flight whereas insects have light wing structure 

approximately 1% of the insect’s weight proves to be viable for the 

production of MAV(Ellington, 1984).  Flapping wing micro aerial vehicles 

have agile behaviour, small size, broad v-n curve, and promising 

characteristics at low Reynolds(Caetano et al., 2013)  

PAV:  

PAV is the category of parachute UAV having characteristics of high 

endurability, robustness, and safety during system damage. It contains a 

non-rigid wing structure termed parafoil depends on wind gusts for 

manoeuvring. 

Helicopter: 

 Rotary wing aircraft derive lift from rotary blades termed rotorcraft. The 

helicopter has a set of blades known as main rotor blades and tail rotor 

blades move opposite to each other to maintain stability. 

Aero-plane: 

Fixed wing, heavier than aerial machines includes an aero-plane which 

stands for vehicles that fly in the air and are propelled forward by jet engines 

to produce thrust. Based on type, an aero-plane is categorized into (i) 

Military (ii) Transport/cargo (iii) Commercial (iv)Trainer, and many more 

as shown in Figure 3.2. Military aircraft are designed to protect the nation 

from an enemy. It may be fixed or rotary. These combat aircraft are 

purposefully designed to enable aerial warfare. Cargo-type aircraft are 

commercially designed for the transportation of goods. Commercial aircraft 

come under civil aircraft used for the transportation of passengers or multiple 

loads of cargo. 

Research cum trainer aircraft is used for study as well as for research 
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purposes. These types of aircraft are also used for flight training. One of the 

examples of Indian research aircraft is Hansa. 

Various Categories of aircraft are compared on the basis of their features 

discussed in above section is displayed in Table 3.1 

S. No. Factors Airship UAV Rotorcraft Fixed Wing 

Aircraft 

1 Design Simple Moderate Complex Complex 

2 Stability Stable Highly Stable Less Stable Stable 

3 Manoeuvrability Less Moderate Highly Moderate 

4 Control Simple Simple Complex Complex 

5 Auto-Controller Primitive Advanced Advanced Advanced 

6 Flight Data Test Time High High Less Moderate 

Table 3.1: Comparison of Aircraft 

 

AEROPLANE (Heavier than Air- Fixed Wing Aircraft) 

 

 

Military                             Transport /Cargo            Commercial          Trainer 

 

Tejas                               Dornier-228                  Boeing -747            Hansa-III                   

 

Fig 3.2 Classification of Airplane (Timeline of HAL Tejas, 

n.d.)(Dornier-228, n.d.)(Boeing-747, n.d.)(NAL Hansa, 2000) 

 

 
3.2 HANSA-III AIRCRAFT 

 

Hansa-III is a research cum trainer, two-seater aircraft manufactured by 

NAL, India, and useful for research purposes. Three designs were developed 
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by NAL in which Hansa-II was built as a prototype and Hansa-III was 

finalized for production. 

This aircraft fully satisfies my problem statement so I chose this particular 

aircraft for my study. To fetch the flight data, multi-variant sensors are 

instrumented in the aircraft for flight data acquisition. The aircraft structure 

is fully composite having a low wing configuration with a tricycle landing 

gear arrangement. It consists of a Rotax-914 F3 engine coupled with a 

Hoffmann propeller(R. Kumar, 2012). Hansa-III has already covered more 

than 4000 flying hours. 

 

Fig 3.3.Hansa-III aircraft (Jaiswal et al., 2020) 
 

 

Geometrical 

Parameters 

Value Geometrical 

Parameters 

Value 

Wing Horizontal Tail 

Planform area (𝑆) 12.47(m2) Planform 

area (𝑆𝑡) 

2.04(m2) 

Aspect ratio (A) 8.8 Aspect ratio (A) 6.35 

MAC (𝑐̅ ) 1.21(m) MAC (𝑐̅ ) 0.59(m) 

Root Chord (𝑐𝑟) 1.3(m) Root Chord (𝑐𝑟) 0.78(m) 

Tip Chord (𝑐𝑡) 0.8 Tip Chord (𝑐𝑡) 0.354(m) 

Taper ratio (Λ) 6(deg) Taper ratio (Λ) 0.454 

Aircraft Aerodynamic Derivatives 

Aircraft span (b) 10.47(m) (𝐶𝐿𝛼,𝑤)ss 4.5 



29 
 

Mass (m) 750(kg) (𝐶𝐿𝛼𝑡
)ss 1.48 

Velocity (V) 36(m/s) (𝐶𝑚𝛼,𝑓
)ss 0.3 

Moment of Inertia 

IY 

907(kg-m2) (𝐶𝐿𝛼𝑡

𝑑€

𝑑𝛼
)ss 0.22 

Moment arm (𝑙𝑡) 3.624(m)   

Density (ρ) 0.96(kg/m3)   

Moment of Inertia 

IX 

925(kg-m2)   

Table 3.2: Geometrical and Aerodynamic Parameters of Hansa-III (R. Kumar, 2012) 

 

POWER PLANT SPECIFICATIONS  

Number of engines One 

Make Bombardier Rotax 914 F3 

Engine limits 

Max. continuous power 

Engine max. power 

100 BHP @ 5500 rpm 

(Propeller rpm 2265) 

l 15% @ 5800 rpm (5 min) 

(Propeller rpm 2385) 

Idle RPM 1400 rpm (Propeller rpm 580) 

Manifold pressure 38.4in Hg at l15% power (max. 5 min) 

Acceleration Max. 5 secs. at -0.5g 

Rating, full throttle at 

sea level pressure 

altitude 

100 BHP, Max, continuous @ 5500 RPM (Propeller rpm 2265) 

115 BHP @ 5800 rpm (Propeller rpm 2385) contingency power for 

max. 5 min. 

Max. Oil Temp. Max. l30°C 

Min. 50°C 

Max. Oil pressure 7 bar 

Fuel grade AV Gas 100 LL 

Oil specification Castrol Syntron, non-detergent, fully synthetic engine oil 

Coolant SERVOKOOL 

Propeller Limit  Hoffmann makes 

HO-V 352F( ) 170 FQ+3 

Max. propeller RPM never exceeds 2700 RPM 

Altitude (Max 

Operating) 

10,000 feet 

Table 3.3: Power Plant Specifications of Hansa-III (NAL, 2000) 
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CONTROL SURFACE MOVEMENT 

 

Rudder 30° left, 30° right; -1-2° 

Wing flaps 20° for landing 1° 

20° for take-off 1° 

Elevator 30° up, 25° down; +2° 

Elevator trim tab 22° up, 33° down; A2° 

Aileron 20° up, 20° down; +2° 

Forward limit 21.94 % of MAC aft of wing MAC LE 

Aft. Limit 27.47 % of MAC aft of wing MAC LE 

Table 3.4: Specification of Control Surface deflection and C.G Range of Hansa-

III(NAL, 2000) 

 

SUMMARY  

This chapter represents a brief model description in terms of geometrical, 

aerodynamic parameters, power plant, and control surface specifications so that it 

can be useful for deducing the state-space representation of the model. 
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CHAPTER- 4 

AIRCRAFT SYSTEM IDENTIFICATION 

 

A flying machine's motion in the atmosphere is characterized by flight dynamics. 

The vehicular attitude and the resultant flight path are decided by the vehicle 

responding to aerodynamics, gravitational, propulsive, and control forces acting 

upon it. The domain of flight dynamics is sectioned into features such as stability 

and control, Performance, Navigation, and guidance. System Identification is a 

part of flight dynamics that creates a mathematical model of a physical system 

based on measurements. 

System Identification is defined as “Identification is the process of determining a 

system's initial and final states using input and output from another system that 

belongs to the same class as the system being tested.”(Zadeh, 1962) 

 The random observations in the course of measurement and process noise are 

distorted due to sensors, and external disturbances. Boeing-737 Max disaster 

represents failure of stability Augmentation system(Sgobba, 2019). Reforming the 

system for innovation, and providing certification to a new computer-based 

system leads malfunctioning of MCAS (Maneuvering characteristic 

Augmentation system) resulting in a catastrophic crash that took 346 lives(Psas et 

al., 2014). Tools are needed to address fatalities due to faulty sensors, flight 

handling characteristics at high AOA, and fault-tolerant control systems. Wind 

tunnel testing, modelling and Simulation predict aircraft dynamics to design 

controllers but are limited to small- scale models therefore System Identification 
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approach should be used to handle imperfections(Jameson & Cooke, 2012b). 

Handling of imperfect measurements is simplified by evaluating the parameters 

of the system using statistical techniques. In the past years, system Identification 

has expanded its growth due to its application in designing controllers, health 

monitoring, and analysis of dynamic systems, making systems fully autonomous, 

and fault-tolerant. System Identification is applied to study the time-variant 

tracking behavior of vehicle subsystems in real time to update system modeling 

by parameter estimation in continuous intervals to detect sensor fault, and system 

failure(Tang et al., 2009a)(Melody et al., 2000)(Hardier et al., 2016).  Real-time 

LS is applied in the area of Robotics, aerospace and automotive(Ljung & 

Gunnarsson, 1990)(Hardier, 2015) 

Aircraft parameter estimation is the best illustration of system identification 

methodology. The process of determining the best estimates that occur in the 

dynamic model to represent the physical system is the methodology of parameter 

estimation. System Identification is a statistical investigation that handles 

estimating the value of derivatives based on measured experimental data. 

Designing autopilots and controllers, expanding the flight envelope, comparing the 

results of analytical techniques like CFD with wind tunnel tests, simulation, 

dynamic analysis, evaluating flying characteristics, confirming aircraft 

performance, and accident investigation are some of the major applications. 

Development of mathematical models for the physical systems subjected to 

imperfect observation or measurement. This phenomenon is termed as system 

identification.  

 

Bryan intuited the conception of aerodynamic modelling, which relates forces and 

moments as a function of translational and rotational motion variables respectively. 

The analytical methodology is the foremost technique of parameter Estimation at 

the initial phase of aircraft design as the accuracy level is low thus Flight and Wind-

Tunnel test is required. The observational/ experimental method provides a strong 
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hold to attain the desired result as compared to the analytical. Some of the 

traditional methods for linear systems in the frequency/ time domain are FFT, ML, 

and LS(Bryan, 1911).   

The values acquired through wind tunnel testing require validation from flight test 

data as it is difficult to obtain the value of power effects, and propulsive effects at 

different flight conditions.  

 

The advancement of Flying Vehicular System Identification and its application in 

chronological order is discussed by Hamel and Jategaonkar(Hamel & Jategaonkar, 

1996a). Miliken first tried to use the static and dynamic parameters from actual 

flight data in 1947(Milliken W.F.Jr, 2003) 

The three categories of traditional parameter estimation techniques are as follows 

as suggested by Ravindra Jategaonkar(Jategaonkar, 2015): (i) EEM, (ii) OEM, (iii) 

FEM. Least square also known as regression analysis defines a category of 

Equation error method in which the flight dynamic model of the physical system is 

not known. The least-square accounts for process noise, not measurement noise. 

Non-linear/ Ordinary LS methodology was introduced by Shinbrot and 

Greenberg(Shinbrot, 1951)(Greenberg, 1951). The performance capability of this 

methodology is robustly determined by data quality. The cost function is in the 

form of an Input-Output equation defined directly in the Equation-error Method. In 

the case of the output error method (OEM), the model parameters are altered 

consecutively for error minimization between the system output and response of 

the predicted model. This method has the potential to solve non-linear optimization 

problems too. Its application for parameter estimation makes use of flight data and 

needs the postulation of accurate flight dynamic formulation. This process assumes 

that process noise is imperceptible and handles measurement noise along with 

process noise. This is the most applicable time-domain method for aircraft 

parameter estimation. One of the most efficient OEMs is the Maximum Likelihood 

intuited by Fischer is inapplicable to the non-linear system as handling a non-linear 

model structure is practically difficult. The FEM faces difficulty in extending it 
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through multiple experiments by treating the process noise distribution matrix 

independently for every maneuver as proposed by the researcher (Iliff, 1989) [23]It 

does not guarantee the correct postulate of the model. This methodology has the 

capability of handling process and measurement noise and is also extended to the 

non-linear system as proposed by Jategoankar (Jategaonkar, 2015) thus FEM is 

applied for unique cases only as the majority of parameter estimation problems are 

solved by the Output error method or Least-square method. Since the last three 

decades, the method of maximum likelihood has been used successfully for 

parameter estimates utilizing flight data. This statistical technique minimizes error 

and makes the system dynamically stable as proposed by Rakesh Kumar(R. Kumar, 

2012).ML is the best tool to define output error method. This methodology is highly 

efficient when the sample size is large but inefficient in handling process noise thus 

process noise is assumed to be negligible and measurements taken by sensors are 

corrupted by measurement noise. This statistical technique is not used for non-

linear dynamic systems and noisy environmental interruptions. Accuracy is 

measured in terms of Cramer-Rao bounds in this method. 

 

Numerous subjects related to estimating aircraft parameters include linear and 

stepwise regression, characteristics, and applicability of statistical techniques, like  

maximum likelihood as explained by Klien (Klien & Morelli, 2006). The research 

work in the area of parameter estimation in different flying regimes at high AOA 

for unstable aircraft is also addressed by Klein. Estimating unsteady aerodynamics 

on a lifting surfaces involves several techniques which are complex for a purpose 

of estimating  parameters(Morino, 1974)(Robert, n.d.). Quiezo.et.al discussed the 

vortex system to consider the downwash effect for swept, and tapered wing(Queijo 

et al., 1978). The unsteady aerodynamic effects is modelled in longitudinal/ lateral 

equations for estimating aerodynamic derivatives(Queijo et al., 1979)(Raisinghani 

& Ghosh, n.d.)(Wells, W. R., Banda, S. S., and Quam, 1979)(Singh & IIT Kanpur, 

n.d.). 
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A wider level of fidelity for non-linear systems like aircraft, rotary-wing aircraft, 

missiles, and UAVs makes this technique unique and novel on the other side ANN 

faces difficulty in estimating parameters at higher AOA. System Id is applied to 

study the time-variant tracking behaviour of vehicle subsystems in real time to 

update system modelling by parameter estimation in the continuous interval (Tang 

et al., 2009b)(Hardier, 2015)(Ljung & Gunnarsson, 1990)to detect sensor fault and 

system failure.  Real-time LS is applied in the areas of Robotics, aerospace, and 

automotive(Jategaonkar, 2015)(Tischler & Remple, 2006)(Zadeh, 1962) 

General System Identification: The Quad-M in system Identification defines 

Maneuverers, Models, Measurement, and Methodology which is discussed 

elaborately in the below section 

(a) Input to experiment behaviour of the physical system in the form of 

Maneuverers 

(b) Mathematical Model of the physical system 

(c) Responses in terms of Measurement            

(d) Methodology adopted to define system Identification 

 

4.1 FLIGHT DATA GENERATION 

The Flight test of Instrumented Research cum Trainer Aircraft Hansa-III was 

regulated at the flight Lab of IIT Kanpur and flight data was collected operating 

data acquisition system(R. Kumar, 2012) 

Symbolic Representation to define Real Flight data :  

During flight testing, numerous longitudinal flight data sets were acquired. Using 

the eight data sets, longitudinal aerodynamic characteristics were estimated 

making use of Maximum likelihood. 



36 
 

The Terminology HA resembles ‘Hansa-III’, L is Longitudinal, and numerals ‘1-8’ 

define the number of data sets such as HAL1, HAL2, HAL3 

For longitudinal, the letter(s) accompanied by ‘L’ such as ‘M’ correspond to multi-

step, ‘D’ as a doublet, and ‘P’ as pulse elevator control inputs.  

 

Flight Data Generation: 

 

Hansa-III is a research cum trainer, two-seater type aircraft manufactured by NAL, 

India, and useful for research purposes. Three designs were developed by NAL in 

which Hansa-II was built as a prototype and Hansa-III was finalized for production. 

This aircraft fully satisfies my problem statement so I chose this particular aircraft 

for my study. To fetch the flight data, multi-variant sensors are instrumented in the 

aircraft for flight data acquisition. The aircraft structure is fully composite having 

a low wing configuration with a tricycle landing gear arrangement. It consists of a 

Rotax-914 F3 engine coupled with a Hoffmann propeller (NAL, 2000). A Flight 

test is carried out to record an enormous amount of longitudinal flight data for 

evaluating longitudinal parameters using the Maximum likelihood method 

(Jategaonkar, 2015). The flight tests at different altitudes such as (4000ft, 6000ft, 

and 8000ft) at 1200 N thrust were conducted. Elevator control inputs such as 

multistep, doublet, and pulse were accustomed for generating flight data at low 

AOA. The raw data is computed in the form of velocity (V), rates (p, q, r), pitch 

angle (θ), yaw angle(ψ), roll angle (φ), deflection angles (δ𝑒, δ𝑎 , δ𝑟) accelerations 

(ax, ay, az), α, and β for locating the sensors position. An accelerometer reading 

measures accelerations in the body axes that are in close proximity to the C.G. The 

deflections by control surfaces δ𝑒are measured through a potentiometer. The 

Gyroscope measures the angular rates (p, q, r) and (𝑝̇, 𝑞̇, 𝑟̇) are calculated from 

angular rates numerical differentiation (p, q, r). OAT gauze measures the 

temperature. Some calibration factors and correction factors are recommended 

while sensor measurement so that they can be incorporated into the mathematical 

modeling of aircraft.  
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Fig 4.1 Wing and Tail Contribution to the Pitching Moment of Hansa-III  

 

 Flight Data at Low Angle of Attack 

 

In terms of voltage (3-2-1-1) multi-step, doublet, and pulse input types, the raw 

flight data was recorded. The raw data was converted using the relevant calibration 

chart into the corresponding motion and control variables. Figures 4.5-4.9 

presented below show five data sets of longitudinal multistep 3211 Input form 

(HALM1, HALM2, HALM3, HALM4, and HALM5), one dataset (HALD1) and 

two datasets (HALP1, HALP2) were generated using the elevator as input.   Figure 

4.2 discusses below mentioned (δ𝑒) elevator deflection angle, (α) angle of attack, 

(θ) pitch angle, (q) pitch rate, (V) velocity, (ax) acceleration along the x-axis and 

(az) acceleration along the z-axis in the graphical representation.  

About the trim state, the elevator deflects by (±2 to ±6 degrees). The X-

axis and Z-axis linear accelerations (ax, az) at trim conditions are 1 ms-2 and -10 

ms-2, The 𝛼𝑡𝑟𝑖𝑚 varies from 2-10 deg and the perturbation speed is 56m/s. The 

state variables α, θ, β, ψ, δ𝑒, φ in degree ax, ay, az are in m/s2 p, q, r in degree/s, 

and V  in m/s.

𝑀𝑐𝑔𝑡 

 

C.G 

𝑀𝑐𝑔𝑤 

 

𝑍𝑏 

 

𝑋𝑏 

𝑌𝑏 

 

𝑍𝑐𝑔𝑡  

 

 
𝑙𝑡  

𝑍𝑐𝑔,𝑤 
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Fig 4.2 Flight Dataset Pre-processing HALM5 

 

Figure 4.2 shows the processed longitudinal flight data about HALM5 input form 

including motion variables (α) angle of attack in degrees, (θ) pitch angle in degrees, 

(q) pitch rate in degree/s, (V) velocity in m/s, (ax) acceleration along the x-axis and 

(az) acceleration along the z-axis in m/s2  
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Fig 4.3 Flight Dataset Pre-processing, HALD1 

 

Figure 4.3 shows the processed longitudinal flight data about doublet HALD1 

input form including motion variables (α) angle of attack in degrees, (θ) pitch 

angle in degrees, (q) pitch rate in degree/s, (V) velocity in m/s, (ax) acceleration 

along the x-axis and (az) acceleration along the z-axis in m/s2  
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    Fig 4.4 Flight Dataset Pre-processing, HALP1 

 

Figure 4.4 shows the processed longitudinal flight data about the Pulse HALP1 

input form including motion variables (α) angle of attack in degrees, (θ) pitch angle 

in degrees, (q) pitch rate in degree/s, (V) velocity in m/s, (ax) acceleration along the 

x-axis and (az) acceleration along the z-axis in m/s2 

 

The three variations of Elevator Control Input: Multi-step (3-2-1-1), Doublet, and 

Pulse are presented in this chapter. The pilot executes these three elevator forms by 

deflecting the elevator from its trim state to acquire longitudinal data.  
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Fig 4.5 3211 Elevator Input, HALM1 

 

 

 

Fig 4.6 3211 Elevator Input, HALM3 

 

 

Fig 4.7 3211 Elevator Input, HALM5 

 

 

Fig 4.8 Doublet Elevator Input, HALD1 

 

 

Fig 4.9 Pulse Elevator Input, HALP1 
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Figures 4.5 - 4.9 present different forms of elevator control input at the low and 

moderate angles of attack to generate longitudinal datasets. 

 

4.2 DATA COMPATIBILITY CHECK 

 

Sensors that detect accelerations, locations, and rates related to the translational and 

rotational motion of the C.G. and additionally orientation/ magnitude of the velocity 

of the relative air are part of the instrumentation on Research Cum trainer aircraft 

To verify that the measurements are mutually consistent, kinematic relationships 

between the attributes are used. The analysis is termed data compatibility analysis 

(Klien & Morelli, 2006) 

Data compatibility analysis demonstrates that the kinematic relations satisfy 

the sensor measurements if the measurements are perfect. Practically, Sensor 

Measurement includes a systematic error, as well as random errors thus these 

equations, serve as tools for calibrating the instrumentation errors as well as 

correcting the measured data from the sensors to estimate systematic errors. 

Accuracy and consistency is prerequisite for modelling the structure and parameter 

estimation. Consequently, these measurements are applied to rigid aircraft that are 

checked for compatibility. Processed flight data include systematic and random 

error which requires to be removed. 

The chapter covered data compatibility checks for the Hansa-III flight data. 

The systematic errors includes zero shift biases, scale factors, and time shifts that 

make data incompatible to be used. In the context of the parameter Estimation of 

an aircraft, an enormous variable is measured and recorded during testing. 

therefore, a data compatibility check must be carried out before parameter 

estimation.  

The goal of flight path reconstruction (FPR), also known as data 

compatibility check, was to confirm that the measurements used to identify the 

model were accurate and consistent. Data Compatibility is first introduced by 
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Gerlachin in 1966, for flight path reconstruction. All biases are measured and initial 

conditions were evaluated by Mulder 1975(Klien & Morelli, 2006) 

 

Mathematical Model 

The six DOF model consists of kinematic equations, recorded angular rates, and 

measured accelerations. 

1) Determination of systematic error that includes zero shifts, scale factors, and 

time delays. 

2) Generation of aircraft states such as velocity components, which implies state 

estimation.  

The bias and scale factor present in the measured state variable using the Maximum 

Likelihood MATLAB Code (Jategaonkar, 2015). The following equations used for 

reconstructing the dynamics of RCTA Aircraft are mentioned in the below section 

 

Kinematic Equations  

These equations are sets of translational, rotational, and navigation equations on 

body-fixed axis. 

 

Translational Equations 

𝑢̇= − q w + r v − g sin θ+ a x                                                                                                                                          4.1 

𝑣̇= -r u +pw + g sin θ cos φ + a y                                      4.2 

𝑤̇ =-p v +q u + g sin θ cos φ + a z                                                                                                                              4.3 

Rotational Equations 

𝜑̇ = p+ q sin φ tan θ +r cos φ tan θ 4.4 

𝜃̇= q cos φ – r sin θ                                                                                                             4.5 

𝜓̇= q sin φ sec θ+ r cos φ sec θ                                                                                           4.6 
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Navigational Equations 

𝑥̇𝐸 =u cos ψ cos θ + v (cos ψ sin θ sin φ - sin ψ cos φ)  

             + w (cos ψ sin θ cos φ + sin ψ sin φ)     

4.7 

𝑦̇𝐸= u sin ψ cos θ + v (sin ψ sin θ sin φ + cos ψ cos φ) + w (sin ψ sin θ 

cos φ – cos ψ sin φ) 

4.8 

ℎ̇  = u sin θ – v cos θ sin φ – w cos θ cos φ        4.9 

 The above equations are nonlinear, coupled differential equations. The equations 

contain (u, v, w), (ψ, θ, φ), (x E, y E, h), (p, q, r), and (a x, a y, a z) as state variables 

that can be evaluated using measured angular rates, and linear accelerations. Based 

on an estimation of the above state variables, utilizing the equations provided 

below, it is simple to deduce other variables as well. 

V= √𝑢2  + 𝑣2 + 𝑤2 4.10 

α =   tan-1(
𝑤

𝑢
)                                                                                                                         4.11 

β = sin-1(
𝑣

𝑉
)                                                                                                                            4.12 

𝑞̅ = 
1

2
 ρ V2                                                                                    4.13 

 

Since the effects of flight under given operating conditions are not easy to 

test in a laboratory thus calibration is essential for error elimination from flight data. 

Let us consider the sensor model equation in terms of biases, time delay, scale 

factor, and measured variable ‘y m’ as 

y m(t) = k y y(t - ζ) + Δ y                                                                                                       4.14 

 



45 
 

Where k stands for scale factor, Δ is bias effect and ζ the time delay. Ideally, the 

value of scale-factor must come unity. The bias factor (Δ), and time-delay (ζ) 

should be negligible. It is assumed to be a constant instrumentation error. 

The linear accelerations calibrated at COG are estimated from acceleration (ax m 
AS, 

a y m 
AS, a z m 

AS) by using a navigational sensor, accelerometer, and X, Y, Z in 

equation (4.15-4.17) refers to the position of accelerometer (R. Kumar, 2012) 

 

a x CG = a x m +(q2 + r2) X + (p q-r) Y - (p r + q) Z - Δ a x                                      4.15 

ayCG= a y m -( p q +r) X + (p2 +r2) Y - (q r –p) Z - Δ ay                                                     4.16 

a zCG = a z m – (p r-q) X - (q r-p) Y + (p2+q2) Z - Δ a z    
4.17 

Where subscript m refers to measured quantities. XASCG, YASCG, and ZASCG as accelerometer 

positions to COG. The bias measurement a x 
CG, ay 

CG, a z 
CG indicated by Δ a x, Δ a y and Δ a z  

The rates p, q, and r stand for pm– Δ p, q m-Δ q and rm– Δ r acquired from measured rates (pm, 

q m and rm) correcting biases (Δ p, Δ q, and Δ r). The state equations (4.18-4.24) incorporate 

the bias term as given below. Refer Appendix C 

 

𝑢̇ =- (q m-Δ q) w + (rm – Δ r) v – g sin θ + a x 
CG    4.18 

𝑣̇= - (rm – Δ r) u+ (pm – Δ p) w + g cos θ sin φ + a y 
CG        4.19 

𝑤̇=-(pm – Δ p)v+ (q m-Δ q )u + g cos θ cos  φ+ a z 
CG     4.20 

𝜑̇ = (pm – Δ p) + (q m-Δ q) sin φ tan θ + (rm – Δ r) cos φ tan θ     4.21 

𝜃̇ = (q m-Δ q) cos φ - (rm – Δ r) sin φ       4.22 

𝜓̇= (q m-Δ q) sin φ sec θ + (rm– Δ r) cos φ sec θ                 4.23 

ℎ̇= u sin θ – v cos θ sin φ-w cos θ cos φ                        4.24 
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The sideslip angle and the angle of attack at nose-boom modelled in term of scale factor and 

bias is given below where variables kα and kβ stands for scale factors, Δ αNB and ΔβNB as biases 

for α, and β. 

V m    =   √𝑢2  + 𝑣2 + 𝑤2 4.25 

αN B, m = Kα tan-1 (w NB/u NB) + ΔαNB                                                                                                                                  4.26 

βNB, m=K β sin-1 (
𝑣𝑁𝐵

(𝑢𝑁𝐵
2 +𝑉𝑁𝐵

2 +𝑤𝑁𝐵
2 )1/2

)  + Δβ NB                                                                            4.27 

φ m = φ                                                                                                                                                          4.28 

ψ m = ψ                                                                                                                                                                                                                                                               4.29 

hm = h                                                                                                                                        4.30 

 

 

The x NBCG, y NBCG, and z NBCG stand for offset distances taken from COG in the 

below equation, and at the aircraft nose-boom the velocity components are given 

by 

 

UNB =u - (r m-Δ r) y NBCG + (q m – Δ q) z NBCG                                                                                                           4.31 

VNB = v - (p m-Δ p) z NBCG + (r m – Δ r) x NBCG 4.32 

W NB = w - (q m – Δ q) x NBCG + (p m-Δ p) y NBCG                                                                                                       4.33 

  

Compatibility Factors Calculation Using Longitudinal Actual Flight Data 

 

Flight path Reconstruction using ML Matlab code was taken on real processed data 

at a low-moderate angle of attack applying observations equation (Jategaonkar, 

2015) 

 

      Figure 4.10 - 4.12 displays the input variables α, θ, β, q,𝑎𝑍 and V measured and 

estimated responses. 
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Figure 4.10 displays measured and estimated responses of longitudinal motion 

variables (θ, a z, α, q, V, δ e) obtained from FPR for multistep HALM5 Input form 
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Figure 4.11 displays measured and estimated responses of longitudinal motion 

variables (θ, a z, α, q, V, δ e) obtained from FPR for doublet HALD1 Input form. 
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Figure 4.12 displays measured and estimated responses of longitudinal motion 

variables (θ, a z, α, q, V, δ e) obtained from FPR for pulse HALP1 Input form. 

 

It is remarked from the above figures that estimated responses compliment well 

with given measured responses. It is found that the desired control input is enforced 

so fast that velocity variation is slightly low which mismatches the estimated 

response with the measured one. 

The estimation of scale factors using the Maximum Likelihood method to check 

data compatibility is represented below (R. Kumar, 2012) 

Θ = [ΔpΔq ΔrΔaxΔay Δa zΔαΔ kα]T 4.34 
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The unknown vector represents bias and scale factor for the reconstruction of 

longitudinal dynamics of RCTA aircraft. The ML technique is used for the 

estimation of compatibility factors. The level of parameter accuracy is evaluated by 

the Cramer-Rao bounds. 

Table 4.1 presented in the below section shows the values of bias, and scale factor 

(Δ kα) in the form of ΔpΔq ΔrΔaxΔay Δa zΔαΔ kα for all data-sets. It has been 

noted that the scale factor value is nearly one and bias is assumed to be negligible. 

The deviation in the values of these factors is due to interference effects produced 

by the propeller or atmospheric turbulence thus slight deviation in these factors is 

assumed during flight test. 

 

S. No Data 

Sets 

∆a x ∆a y ∆a z ∆p ∆q ∆r K α ∆α 

1 HALM1 0.412 -0.218 -0.59 0.0019 -0.00075 -0.0059 0.93 0.045 

2 HALM2 0.238 -0.235 -0.297 0.0015 -0.0015 -0.0058 0.85 0.045 

3 HALM3 0.089 0.086 -0.012 -0.0004 -0.0009 0.0037 1.01 0.039 

4 HALM4 0.137 -0.115 -0.286 -0.0001 -0.0015 -0.0021 0.91 0.143 

5 HALM5 -0.35 -0.087 -0.178 -0.000048 -0.0029 -0.0004 0.7 0.02 

6 HALD3 0.814 0.116 -0.454 -0.000005 0.00001 -0.0035 0.89 0.194 

7 HALP1 1.01 0.15 -0.09 0.000003 0.00002 0.00001 0.87 0.073 

8 HALP2 0.11 0.135 0.0151 -0.0003 -0.0007 0.002 0.92 0.075 

   

Table 4.1: Estimation of Scale factor and bias factor 

 

Table 4.1 shows the scale and bias factor of different data sets and it is observed 

that data set HALM3 of multi-step elevator input has the value of scale factor is 

1.01 which illustrates its relevancy from other datasets. 

 

4.3 AERODYNAMIC MODELING OF HANSA-III AIRCRAFT 

 

Equations of motion are used to create the mathematical model of the Hansa-III 

aircraft. The aerodynamic forces and moments will be estimated using this. The 



51 
 

flight test was carried on at different manoeuvres of the elevator such as multi-step, 

doublet, and pulse input. It is mostly found that longitudinal motion predominantly 

excites short-period mode rather than phugoid thus short- period equations are used 

to estimate longitudinal parameters. These equations are a set of state equations, 

observation equations, and equations of motion (refer to Appendix C) 

Governing Longitudinal Equation in Wind Axis in short-period mode (Peyada et 

al., 2008) (Jategaonkar, 2015)  

Force Equation  

 

𝑉̇ = −{
𝑞̅.𝑠

𝑚.
} 𝐶𝐷 + g 𝑠𝑖𝑛(𝛼 − 𝜃) + {

𝑇

𝑚.
} cos 𝛼 4.35 

𝛼̇ =  − {
𝑞̅.𝑠

𝑚.𝑣
} 𝐶𝐿 + 𝑞 + 

𝑔

𝑉
𝑐𝑜𝑠(𝛼 − 𝜃) -{

𝑇

𝑚.𝑣
} sin 𝛼 4.36 

𝜃̇ = 𝑞 4.37 

Moment Equation 

 

 

𝑞̇ = (
𝑞̅.𝑠.𝑐

𝐼𝑦
) . 𝐶𝑚 + {

𝑇

𝐼𝑌𝑌
} 𝑙𝑡𝑧 

4.38 

   

To analyse the aircraft dynamics, the aircraft is modelled in terms of mathematical 

equations as aerodynamic stability and control derivatives shown below 

 

𝐶𝐿={𝐶𝐿0
+ 𝐶𝐿𝛼

. 𝛼 + 𝐶𝐿𝑞
.

𝑞𝑐̅

2𝑈1
+ 𝐶𝐿𝛿𝑒

. 𝛿𝑒} 4.39 

𝐶𝐷={𝐶𝐷0
+ 𝐶𝐷𝛼

. 𝛼 + 𝐶𝐷𝑞
.

𝑞𝑐̅

2𝑈1
+ 𝐶𝐷𝛿𝑒

. 𝛿𝑒} 4.40 

𝐶𝑚={ 𝐶𝑚0
+ 𝐶𝑚𝛼

. 𝛼 + 𝐶𝑚𝑞
.

𝑞𝑐̅

2𝑈1
+ 𝐶𝑚𝛿𝑒

. 𝛿𝑒  } 4.41 
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Assumptions: 

Thrust setting angle = 0; Flight path γ = constant at cruise state; flight velocity is 

constant as elevator control input excites short-period dynamics(JAISWAL & 

PRAKASH, 2022) 

Simplified longitudinal state equation to estimate non-dimensional derivatives as 

longitudinal stability and control predominantly excite short-period mode 

𝛼̇ =  − {
𝑞̅. 𝑠

𝑚. 𝑣
} 𝐶𝐿 + 𝑞 

4.42 

𝜃̇ = 𝑞 4.43 

𝑞̇ = (
𝑞̅. 𝑠. 𝑐

𝐼𝑦
) . 𝐶𝑚 

4.44 

 

Simplifying set of equations 

𝛼̇ = 𝑞 − 
𝜌𝑉𝑆𝑤

2𝑚
 {𝐶𝐿0

+ 𝐶𝐿𝛼
. 𝛼 + 𝐶𝐿𝑞

.
𝑞𝑐̅

2𝑈1
+ 𝐶𝐿𝛿𝑒

. 𝛿𝑒} 
4.45 

𝜃̇ = 𝑞 4.46 

𝑞̇ =
𝜌𝑉2𝑆𝑤𝑐̅

2𝐼𝑦
 { 𝐶𝑚0

+ 𝐶𝑚𝛼
. 𝛼 + 𝐶𝑚𝑞

.
𝑞𝑐̅

2𝑈1
+ 𝐶𝑚𝛿𝑒

. 𝛿𝑒 } 
4.47 

 

The parameter vector (Θ) determines the value of non-dimensional longitudinal 

derivatives which is given as (R. Kumar, 2012) 

 

Θ = [𝐶𝐿0  𝐶𝐿𝑎
𝐶𝐿𝑞

𝐶𝐿𝛿𝑒
𝐶𝐷0

  𝐶𝐷𝛼
𝐶𝐷𝛿𝑒

𝐶𝑚0
𝐶𝑚𝛼

𝐶𝑚𝑞
𝐶𝑚𝛿𝑒  ]

T          4.48 

                                                                        

4.4 METHODOLOGY OF PARAMETER ESTIMATION 

Maximum Likelihood  

 Maximum likelihood is generally applicable for estimating longitudinal 
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derivatives of dynamic models utilizing actual flight data. M.L estimators are 

reliable, effective, efficient, and used for covariance matrices with no state 

noise. It is formulated by minimizing Cost function ‘J’ which is the difference 

between measured and estimated response as expressed in 

equation(Jategaonkar, 2015)(R. Kumar, 2012) (Jaiswal et al., 2020)  

 

J(Θ, R) = L(z| Θ, R) = ½ ∑ [𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]𝑅 − 1 [𝑁
𝑘=1  𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]  + N/2 

ln [det(R)] + Nny/2 ln(2∏) 

4.49 

   

 

Figure 4.13 Output Error Method 

 Properties of Maximum likelihood function(Jategaonkar, 2015): 

 

1. Asymptotically unbiased is a characteristic property of maximum likelihood 

estimates lim
𝑛→∞

 E (ʘML) = ʘ 
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2. The novel feature of maximum likelihood estimates is that they are 

asymptotically consistent. 

3.  The estimates ML have the virtue of being asymptotically efficient with respect 

to the statistical precision bounds known as Cramer Rao bounds. 

PARAMETER ESTIMATION 

The longitudinal derivatives were estimated using the compatible flight data 

corresponding to various control inputs, including multi-step [3211], doublet, and 

pulse using the ML code (Jategaonkar, 2015)   

 

 

Fig 4.14 shows the convergence of HALM5 Multi-step Input in terms of 

Aerodynamic Derivatives (𝐶𝐿𝑞
, 𝐶𝐿𝛼

, 𝐶𝐿0
, 𝐶𝐷0

, 𝐶𝐷𝛼
, 𝐶𝐷𝛿𝑒

, 𝐶𝑚𝑞
, 𝐶𝑚0

, 𝐶𝑚𝛼
, 𝐶𝑚𝛿𝑒

) 
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Fig 4.15 shows the convergence of HALD1 Doublet Input in terms of Aerodynamic 

Derivatives (𝐶𝐿𝑞
, 𝐶𝐿𝛼

, 𝐶𝐿0
, 𝐶𝐷0

, 𝐶𝐷𝛼
, 𝐶𝐷𝛿𝑒

, 𝐶𝑚𝑞
, 𝐶𝑚0

, 𝐶𝑚𝛼
, 𝐶𝑚𝛿𝑒

) 
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Fig 4.16 shows the convergence of HALP1 Pulse Input in terms of Aerodynamic 

Derivatives (𝐶𝐿𝑞
, 𝐶𝐿𝛼

, 𝐶𝐿0
, 𝐶𝐷0

, 𝐶𝐷𝛼
, 𝐶𝐷𝛿𝑒

, 𝐶𝑚𝑞
, 𝐶𝑚0

, 𝐶𝑚𝛼
, 𝐶𝑚𝛿𝑒

) 

 

Figures presented in the above section show the estimated response of derivatives 

(𝐶𝐿𝑞
, 𝐶𝐿𝛼

, 𝐶𝐿0
, 𝐶𝐷0

, 𝐶𝐷𝛼
, 𝐶𝐷𝛿𝑒

, 𝐶𝑚𝑞
, 𝐶𝑚0

, 𝐶𝑚𝛼
, 𝐶𝑚𝛿𝑒

) The ML technique is applied to 

eight data- sets of elevator input as a multi-step, doublet, and Pulse for parameter 

estimation.  
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Fig 4.17 The measured and computed results obtained from ML: HALM5 

 

Figures 4.17 presented in the above section measure the estimated and measured 

response of variables (α, θ, q, a x, and a z) through the X, Z body axis in the act of 

parameter estimation. The data sets' responses HALM5 show a strong correlation 

between the estimated and measured motion variables 
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Fig 4.18 The measured and computed results obtained from ML: HALD1 

 

Figure 4.18 presented in the above section measure the estimated and measured 

response of variables (α, θ, q, a x, and a z) through the X, Z body axis in the act of 

parameter estimation. The data sets' responses HALD1 show a strong correlation 

between the estimated and measured motion variables. 

 

Table 4.2 presents the numeric value of parameters estimated through the ML 

method. It is observed from the tabulated data that the value of parameters is 

accurate and close to wind tunnel values. 
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Data 

Sets 

𝑪𝑫𝟎
   𝑪𝑫𝜶

 𝑪𝑫𝜹𝒆
 𝑪𝑳𝟎

   𝑪𝑳𝒂
 𝑪𝑳𝜹𝒆

 𝑪𝒎𝟎
 𝑪𝒎𝜶

 𝑪𝒎𝜹𝒆
 𝑪𝒎𝒒

 

W.T 

Values 

0.035 0.086 0.026 0.354 4.97 0.26 0.052 -0.4596 -1.008 
 

HALM1 0.059 0.263 0.165 0.037 5.964 0.194 0.078 -0.407 -0.734 -8.57 

HALM2 0.053 0.216 0.136 0.0842 5.69 0.184 0.076 -0.429 -0.711 -8.11 

HALM3 0.0588 0.093 0.058 -0.18 3.94 0.5367 0.071 -0.35 -0.851 -11.1 

HALM4 0.145 0.408 0.202 0.1141 6.16 0.27 0.0918 -0.6437 -0.909 -6.77 

HALM5 0.0408 0.0282 0.0473 0.2254 6.4592 0.0196 0.0787 -0.4259 -

0.8665 

-

11.612 HALD1 0.2178 0.344 -0.577 -0.44 3.75 -2.027 0.183 -6.67 -0.51 -0.642 

HALP1 0.164 0.463 -0.128 -0.606 5.78 -0.818 0.103 -8.67 -0.33 -0.728 

Table 4.2: ML-based parameter estimation technique for the longitudinal 

case: Multi- step, Doublet, and Pulse Inputs 

 

Table 4.2 exhibit that obtained values of aerodynamic derivatives using ML is 

reasonably accurate. The value of 𝐶𝐿α,  
𝐶𝑚q,

, 𝐶𝑚0,
, 𝐶𝑚δ e,

 𝐶𝑚α,  
𝐶𝐷0,

 is seen to  

approach wind tunnel values for most data sets and shows a slight variation in 

parameters such as CL0, CDα.The variance in the value from the wind tunnel is 

ignored since the weak parameters 𝐶𝐿δ e,
 𝐶𝐿q,

, and 𝐶𝐷δ e,
have a minimal impact 

compared to the strong ones.  It is also found that rare techniques are available to 

determine the accurate value of the weak parameters due to the unavailability of 

proper flight data or elevator input is not able to follow the desired variation. 

Additionally, one observation is noticed that there is a maximum deviation in the 

values from the Wind Tunnel result in the case of pulse Input as compared to Multi-

step and Doublet. The Multi-step is more consistent as compared to different 

elevator Inputs. The results depicted in tabulated form provide information to the 

researcher about the Control Input types respectively. 

 

4.5 VALIDATION 

Model Validation is a proof-match exercise that is carried out by making use of the 

flight dataset HALM4 corresponds to the doublet input HALD1. The response was 

estimated by resolving six degrees of freedom Equations of motion. It is noticed 
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that the estimated response from HALM4 is close to the measured response of 

HALD1 and validates the result. 

 

Fig.4.19 Parameter estimation from HALM4 and validation using HALD1 

 

The results are also validated with the results that came from wind tunnel results as 

well as a reference paper. The results of strong derivatives are validated as they 

predominantly influence the stability and control of the system. MLH35 is the data 

set referred from the research paper as presented in Table 4.3 (R. Kumar, 2012)  
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Data 

Sets 

𝑪𝑳𝟎
   𝑪𝑳𝒂

 𝑪𝑳𝜹𝒆
 𝑪𝒎𝟎

 𝑪𝒎𝜶
 𝑪𝒎𝜹𝒆

 𝑪𝒎𝒒
 

W.T 

Values 

0.354 4.97 0.26 0.052 -0.4596 -1.008 
 

MLH35 

R 

0.092 5.409 0.282 0.073 -0.395 -0.719 -9.406 

HALM1 0.037 5.964 0.194 0.078 -0.407 -0.734 -8.57 

HALM2 0.0842 5.69 0.184 0.076 -0.429 -0.711 -8.11 

HALM3 -0.18 3.94 0.5367 0.071 -0.35 -0.851 -11.1 

HALM4 0.1141 6.16 0.27 0.0918 -0.6437 -0.909 -6.77 

HALM5 0.2254 6.4592 0.0196 0.0787 -0.4259 -0.8665 -11.612 

 

Table 4.3: Compared Results of Longitudinal Derivatives of Wind-Tunnel,  Multi-

step Datasets, and MLH35 (R. Kumar, 2012) 

The bar pictorial representation of Longitudinal Derivatives of Hansa-III is 

compared with the results of Wind-Tunnel, Dataset HALM5, and MLH35 (R. 

Kumar, 2012) in Fig 4.20 

 

Fig 4.20 Compared Results of Wind-Tunnel, Dataset HALM5, and MLH35[10] in 

term of Graphical representation. 

The result of multiple data sets is compared in the form of bar representation and 

the dataset HALM5 shows minimum variation with wind tunnel result as presented 
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in Table 4.3 thus the values of coefficients of HALM5 are utilized to calculate the 

transfer function of the pitch controller for execution of the second objective.   

SUMMARY:  

In this chapter, a flight test of Hansa-III was conducted for file processing. The 

Data Compatibility is checked for processed flight data to ensure measurements 

used in the model are error-free. Once the FPR is ensured then the equations of 

motion in the wind axis were used to formulate the aircraft mathematical model 

(refer to section 5.3) and longitudinal aerodynamic derivatives were estimated 

using ML Code (Jategaonkar, 2015). Model Validation is exercised once the 

parameters are estimated. Different datasets were used for designing the controller 

using different approaches as discussed in Appendix D1,D2. 
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CHAPTER -5 

AIRCRAFT CONTROLLER DESIGN 

 

This chapter addresses the introduction of aircraft stability, dynamics & automatic 

control. Hence, developing the expression of deriving six DOF equations of motion, 

linearized longitudinal perturbation equations, and longitudinal equations of 

motion in wind axes, the axes system is reviewed. Classical control theory and 

modern control theory is applied to design control system. To apply traditional, 

classical theory to design a control system, it is important to understand the concept 

of transfer function whereas, the concept of state-space formulation of system from 

governing equations is important for modern control methods. Both approaches are 

important to design control systems. The chapter discussed open-loop / closed-loop 

PID tuning techniques to  the PID controller's gain parameters. The pitch controller 

is designed using Root-locus, Pole-placement, and Linear quadratic regulator 

methods for optimal results. Simulated Results of traditional, classical, and modern 

control methods are compared in this chapter. 

 

5.1 CONTROL SYSTEM 

Advanced level of control systems involved in all engineering disciplines such as 

aerospace automation, missile guidance, and control systems, robotics engineering, 

automotive, and space science. Hence it is necessary to be familiar with the basics 

of the control system. This chapter focuses on control system analysis both in the 

time and frequency domain as well a glimpse of an aircraft control system is 

introduced with a clear explanation. 
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A system comprises the number of components assigned to perform a specific task. 

The system is described as a control system since the input controls the output 

variable in it. 

Classification: 

1. Open-Loop and Closed-Loop Control System 

 

Open-loop:  

A system where measured output is independent of controlled activity. It consists 

of a system, controller, Input, and output signals for example: 

1. Electric bulb 

2. Stepper motor 

3. Switching ON Fan 

 

Advantages: 

1. Simpler 

2. Economical to operate. 

3. A less complex system reduced maintenance cost 

4. Highly Stable 

 

Dis-Advantages: 

1. Less accurate and reliable. 

2. Calibration is required from time to time  

 

Fig 5.1 Open-loop Control System 
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Closed-loop:  

A system where controlled action depends on measured output is additionally 

known as a feedback control system. It consists of a system, controller, Input, 

output, feedback, and actuators for example: 

1. An autopilot controller 

2. Speed control of DC Motor 

3. Missile/ Rocket Launcher system 

 

Advantages: 

1. High accuracy than open-loop systems. 

2. Recalibration is not required 

3. Automation Facility 

4. Robustness 

Dis-Advantages: 

1. More Complex system increases maintenance cost  

2. Less stable than the open-loop control system 

 

 

Fig 5.2 Closed-loop control system 
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2. Linear and non-linear Control Systems 

Linear Control Systems:  

A linear system is defined as a system in which variables have an exponent one for 

example   y = 3 *x 

Non- Linear Control Systems 

A non-linear system is defined as a system in which variables have an exponent 

other than one for example  𝑥2 + 𝑦2 = 6  

3. Time variant and Time in variant Control systems 

Time variant control system: 

Parameters of the control system vary with time and can be defined as the time-

variant control system 

Time In-variant control system: 

The Parameters of the control system do not vary with time and can be defined as 

a time-invariant control system. 

 

Fig 5.3 Time-Variant Vs Time- Invariant 
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4. Linear Time Variant and Non-linear Time Variant control system 

Linear Time Variant control system: 

The combination of linear systems with time-variant are the systems in which 

variables have an exponent of one and are time dependent. 

 

             X(t)  

 

                                                                                  

                                                                          T(sec) 

 

 

Fig 5.4 Linear Time Variant control system 

 

 Non-Linear Time Variant control system: 

The combination of non-linear systems with time-variant are the systems in which 

variables have an exponent other than one and are time-dependent. 

 

      

             X(t) 

 

 

 

 

                                                                                       T(sec) 

Fig 5.5 Non-Linear Time Variant control system 
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5. SISO and MIMO Control system 

Single Input Single Output (SISO): The control system consists of one Input and 

one output for example speed controller of the fan. 

Multiple Input Multiple Output (MIMO): The control system consists of multiple 

Input and multiple output parameters for example aircraft controller design, and 

auto-controller of the space vehicle. 

To design an accurate control system for our research objective closed-loop, linear, 

time-invariant, SISO control system is elaborately discussed in sections 1,2,3,4 and 

5 

5.2 AIRCRAFT STABILITY AND CONTROL SYSTEM 

 

5.2.1 AIRCRAFT STABILITY 

Stability is the characteristic of the equilibrium state being stable. In physical terms, 

the net moment and resultant forces about the centre of gravity must be zero to 

satisfy stability conditions. 

It is classified as static stability and dynamic stability 

Static: Stability is the ability of a system to resume equilibrium even after being 

moved from its initial state. An example to discuss types of static stability is 

illustrated in the below section 

Positive Static Stability 

If the system is displaced from its initial state and restored to its original state such 

that forces and moments tend the system to attain an equilibrium point is referred 

to as a stable system as seen in Fig 5.6 

Negative Static Stability 
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If the system is displaced from its initial state and tries to go away from its original 

state such that forces and moments tend the system to move away from the 

equilibrium point is referred to as an unstable system 

Neutral Static Stability 

The equilibrium point of the system is independent of displacing from the original 

state and is referred to as a neutrally stable system.  

 

 

 

(i)  Stable System                           (ii) Unstable System           (iii) Neutral System 

Fig 5.6 Stable, Unstable, and Neutral System 

Dynamic: The response and behaviour of the motion of the system while 

displaced from its original state is termed dynamic stability. 

Positive Dynamic Stability 

If the system is displaced from its initial state and oscillations dampen the system 

towards the equilibrium point is termed a dynamically stable system 

Negative Dynamic Stability 

If the system is displaced from the initial state and amplitude of the oscillations 

rises and the system has negative damping then the system will never approach 

towards trim state thus referred to as a dynamically Unstable system 

Neutral Dynamic Stability 

If the system is displaced from its initial state and the amplitude of the oscillations 

never damps or remains constant termed a neutrally dynamically stable system 
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5.2.2 AIRCRAFT CONTROLS 

Elevator: 

The control surfaces are hinged to the trailing edge of the horizontal tail. These are 

found in pairs and provide longitudinal stability to an aircraft mentioned in Fig 5.7 

Pitch control is attained by changing the aircraft lift by deflecting the flapped 

portion of the horizontal tail entitled as the elevator. 

Ailerons: 

The control surfaces are hinged to the trailing edge of an aircraft wing tip. These 

are found in pairs and provide lateral stability to an aircraft. They are performed in 

a synchronized manner as one aileron is raised and the other is lowered known as 

the aircraft's rolling motion. 

Rudder: 

The control surfaces are hinged to the trailing edge of the vertical tail and provide 

directional stability to an aircraft. Yaw control is attained by deflecting the flapped 

portion of the vertical tail termed as rudder. It turns the aircraft in the left and right 

direction similar to the rudder of a boat. 

 

Fig 5.7 Aircraft Controls 

AILERONS 

Rudder 

ELEVATOR 
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5.2.3 AIRCRAFT AXES AND REFERENCE SYSTEM 

Aircraft controls can be acknowledged by defining an axes coordinate system as 

the aircraft is free to rotate about 3 axes which are mutually perpendicular to each 

other as mentioned in Fig 5.8 and the pilot can handle and control the motion about 

axes in all directions hence the axes system is defined as 

Longitudinal Axis: 

Lateral stability about longitudinal axes is a key feature of these axes. Ailerons are 

lateral control that provides rolling motion to an aircraft that moves one wing down 

and the other wing up. 

Lateral Axis: 

Longitudinal stability about lateral axes is a key feature of these axes. Elevators are 

longitudinal control that provides pitching motion to an aircraft that moves the 

aircraft nose in an up-and-down direction. 

Vertical Axis: 

Directional stability about vertical axes is a key feature of these axes. Rudders are 

directional control that provides Yawing motion to an aircraft which moves the 

aircraft to the left and right. 
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                                      Fig 5.8 Stability Axes System 

 

5.2.4 REFERENCE FRAMES 

Inertial Axes: A frame of reference that is having constant velocity or remains 

stationary. All of Newton’s laws are applied in this frame of reference. 

Earth Axes: A frame of reference in which the origin is located on the earth’s 

surface. XE points towards the geographical north, YE points towards the 

geographical east, and ZE points towards the centre of the earth. 

Body Axes: A frame of reference in which the origin is located on the aircraft's 

centre of gravity, with the X pointing towards the aircraft nose and the Y axes 

pointing towards the right wing and the Z axis passing beneath through it. 

Longitudinal Axis 

(LATERAL STABILITY) 
Lateral Axis                         

(longitudinal STABILITY) 

Vertical Axis 

(Directional Stability) 
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Wind Axes: A frame of reference in which the origin is situated on the aircraft's 

centre of gravity, with X w axes pointing forward relative to the velocity vector, Y 

w axes pointing towards the right wing, and Z axes underneath through it. 

Stability Axes: This axes system is defined for aircraft stability and fixed with 

aircraft. X-axes point forward toward the flow direction. Y-axes point towards the 

right wing, and Z-axes underneath through it. 

Based on the Axes control system, Aircraft stability is classified into three types 

as  

1. Longitudinal Stability 

2. Lateral Stability 

3. Directional Stability 

 

5.2.5 LONGITUDINAL STABILITY 

The synonym term “pitch stability” is the tendency of an aircraft to attain a trim 

state about the lateral axis. Longitudinal Stability provides pitching motion by 

moving the aircraft nose in upward and downward directions. Elevators are control 

surfaces that contribute longitudinal motion of an aircraft. 

 

Fig 5.9 Wing and tail Contribution of Hansa-III Aircraft 
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Geometrical 

Parameters 

Value Geometrical 

Parameters 

Value 

Wing Horizontal Tail 

Planform area (𝑆) 12.47(m2) Planform area (𝑆𝑡) 2.04(m2) 

Aspect ratio (A) 8.8 Aspect ratio (A) 6.35 

MAC (𝑐̅ ) 1.21(m) MAC (𝑐̅ ) 0.59(m) 

Root Chord (𝑐𝑟) 1.3(m) Root Chord (𝑐𝑟) 0.78(m) 

Tip Chord (𝑐𝑡) 0.8 Tip Chord (𝑐𝑡) 0.354(m) 

Taper ratio (Λ) 6(deg) Taper ratio (Λ) 0.454 

Aircraft Aerodynamic Derivatives 

Aircraft span (b) 10.47(m) (𝐶𝐿𝛼,𝑤)ss 4.5 

Mass (m) 750(kg) (𝐶𝐿𝛼𝑡
)ss 1.48 

Velocity (V) 36(m/s) (𝐶𝑚𝛼,𝑓
)ss 0.3 

Moment of Inertia 

(IY) 

907(kg-m2) (𝐶𝐿𝛼𝑡

𝑑€

𝑑𝛼
)ss 0.22 

Moment arm (𝑙𝑡) 3.624(m)   

Density (ρ) 0.96(kg/m3)   

Moment of Inertia 

(IX) 

925(kg-m2)   

Table 5.1 Geometrical and Aerodynamic Parameters (R. Kumar, 2012) 

 

Analytical Calculation to estimate Longitudinal Stability  

 

The pitch stiffness 𝐶𝑚𝛼
 is the deciding factor in to state longitudinal stability of 

the system which is estimated by referring to fig 5.9 and Table 5.1 

The permissible range of C.G: Forward C.G position is 21.94% of MAC  and aft 

C.G Position is 27.47% of MAC as MAC of the wing is 1.21m (NAL, 2000) 

Forward C.G position= 0.26 
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Aft C.G Position= 0.332 

C.G = (0.26+0.332)/2 = 0.296 

The Aerodynamic centre lies at the quarter chord point for a symmetrical airfoil 

as MAC is 1.21 m hence 𝑋𝑎𝑐 = 0.3025 

𝑉𝐻 = 
𝑙𝑡×𝑆𝑡

𝑆×𝐶̅
  = 

3.624×2.04

12.47×1.21
 = 0.489 

η = 
𝑄𝑡

𝑄𝑤
  < 1 (Assume tail efficiency factor as unity) 

The wing's pitching moment coefficient 

𝐶𝑚𝛼,𝑤
= 𝐶𝐿𝛼,𝑤( 𝑋𝑐𝑔 -𝑋𝑎𝑐)/MAC 

= 4.5(0.296-0.3025)/1.21 = -0.207 

The coefficient of the horizontal tail's pitching moment 

𝐶𝑚𝛼,𝑡
= - 𝐶𝐿𝛼𝑡

 η𝑉𝐻(1 −
𝑑€

𝑑𝛼
 ) 

= -1.48*1*0.489+ 0.489*0.22= -0.6155 

The coefficient of the fuselage pitching moment 

𝐶𝑚𝛼,𝑓
= 0.3 

By combining the contributions from the airplane's wings, fuselage, and tail, the 

total pitching moment may be calculated as (Nelson, 1998) 

𝐶𝑚𝛼
= 𝐶𝐿𝛼,𝑤( 𝑋𝑐𝑔 -𝑋𝑎𝑐)/𝑀𝐴𝐶 + 𝐶𝑚𝛼,𝑓

 - 𝐶𝐿𝛼𝑡
 η𝑉𝐻(1 −

𝑑€

𝑑𝛼
 ) 

= 4.5(0.296-0.3025)/1.21 + 0.3 +0.22*0.489- 1.48*1*0.489 = -0.345 

The contributing factor determining aircraft static stability is 𝐶𝑚𝛼
 < 0  to attain 

longitudinal stability. 

The Stick-Fixed neutral point(Nelson, 1998) 

𝑋̅𝑛𝑝= 𝑋𝑎𝑐 − 𝐶𝑚𝛼,𝑓
/𝐶𝐿𝛼,𝑤 + 𝐶𝐿𝛼𝑡

 η𝑉𝐻(1 −
𝑑€

𝑑𝛼
 ) 

= 0.3025+ 0.089 = 0.3915 
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Stick-fixed Static Margin = 𝑋̅𝑛𝑝 − 𝑋̅𝑐𝑔 = 0.3915 – 0.296 = 0.095 

The Positive value of the Static Margin illustrates that the system is longitudinally 

statically stable thus control system can be designed to attain the research 

objective  

 

Longitudinal modes of motion: 

Frederick W. Lanchester, Aerodonetics, develops the fundamental concept of 

longitudinal dynamic stability(Nelson, 1989).In the early stages of his study, 

Lanchester noticed the motions of a glider during flying. He conducted various 

experiments with gliders and discovered that all flying machines possess oscillatory 

motions while disturbed from the original equilibrium state.  Two oscillatory modes 

are long-period and short-period. 

Long Period mode 

This oscillatory mode is lightly damped and its motion occurs at a constant angle 

of attack. As its name, this mode has a long period also termed phugoid   

Short Period mode 

This oscillatory mode is heavily damped and its motion occurs at a constant speed. 

As its name, this mode has a short period. 

Longitudinal Dynamics is characterised by damping ratio & frequency of short 

period and long period. Before deducing the expression of longitudinal modes, the 

equation of motion must be linearized by applying the small disturbance theory as 

explained below. 

Linearized Perturbation equation using small-disturbance theory 

This theory solves complex engineering application-based problems by linearizing 

force and moment equations to reduce system complexity. This theory applies to 

steady-state flight conditions and is inapplicable for stalled flights. It is assumed 
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that all state variables are replaced with a summation of steady-state value and 

perturbation. 

𝑢 = 𝑢0 + ∆𝑢                   𝑋 = 𝑋0 + ∆𝑋       

𝑣 = 𝑣0 + ∆𝑣                    𝑌 = 𝑌0 + ∆𝑌       

𝑤 = 𝑤0 + ∆𝑤                 𝑍 = 𝑍0 + ∆𝑍       

𝑝 = 𝑝0 + ∆𝑝                    𝐿 = 𝐿0 + ∆𝐿       

𝑞 = 𝑞0 + ∆𝑞                   𝑀 = 𝑀0 + ∆𝑀       

𝑟 = 𝑟0 + ∆𝑟                     𝑁 = 𝑁0 + ∆𝑁       

𝛿 = 𝛿0 + ∆𝛿      

Assumptions: 

1. It is assumed that X- axes lie along the aeroplane velocity vector. 

2. Considering reference conditions as symmetric. 

3. It is assumed that forces in the force equation include propulsive force and thrust 

force is assumed to be constant.  Thrust force is produced due to the propulsion 

system of an aircraft and creates a moment if not lies through the airplane’s Centre 

of gravity assumed to be constant. 

 X-axes force equation can be rewritten as;  

𝑋0 + ∆𝑋 − 𝑚𝑔𝑆𝑖𝑛(𝜃0 + ∆𝜃)= 𝑚[
𝑑

𝑑𝑡
(𝑢0 + ∆𝑢) + (𝑞0 + ∆𝑞)(𝑤0 +

∆𝑤) − (𝑟0 + ∆𝑟)(𝑣0 + ∆𝑣)]  

5.1 

Assuming 𝑤0 = 𝑣0 = 𝑞0 = 𝑟0 = 𝑝0 = ∅0 = 𝜃0 for X axes, the equation reduces 

to  

𝑋0 + ∆𝑋 − 𝑚𝑔𝑆𝑖𝑛(𝜃0 + ∆𝜃)= 𝑚∆𝑢̇ 5.2 
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As per trigonometric identity;𝑆𝑖𝑛(𝜃0 + ∆𝜃) = 𝑆𝑖𝑛𝜃0𝐶𝑜𝑠∆𝜃 + 𝐶𝑜𝑠𝜃0𝑆𝑖𝑛∆𝜃 

For Smaller angles 𝑆𝑖𝑛∆𝜃 = ∆𝜃;  𝐶𝑜𝑠∆𝜃 = 1 

Substituting all trigonometric relations in the above equation to obtain force 

equation in reduced form 𝑆𝑖𝑛(𝜃0 + ∆𝜃) = 𝑆𝑖𝑛𝜃0+ ∆𝜃𝐶𝑜𝑠𝜃0 

Thus, 𝑋0 + ∆𝑋 − 𝑚𝑔(𝑆𝑖𝑛𝜃0+ ∆𝜃𝐶𝑜𝑠𝜃0)= 𝑚∆𝑢̇ 

If perturbations are set equal to zero; then reference steady-state conditions are 

depicted as 𝑋0 − 𝑚𝑔𝑆𝑖𝑛𝜃0 = 0  

Finalized X force equation can be written as: ∆𝑋 −  𝑚𝑔(𝑆𝑖𝑛𝜃0+ ∆𝜃𝐶𝑜𝑠𝜃0)= 𝑚∆𝑢̇ 

∆𝑋 as ∆ in resultant forces in X-direction and if X is a function of  𝑢,𝑤, 𝛿𝑒 , 𝛿𝑇 then 

∆𝑋 is represented as ∆𝑋= 
𝜕𝑋

𝜕𝑢
∆𝑢 +

𝜕𝑋

𝜕𝑤
∆𝑤 +

𝜕𝑋

𝜕𝛿𝑒 
∆𝛿𝑒 +

𝜕𝑋

𝜕𝛿𝑇 
∆𝛿𝑇  

 
𝜕𝑋

𝜕𝑢
,
𝜕𝑋

𝜕𝑤
 terms are known as stability derivatives 

𝜕𝑋

𝜕𝛿𝑒 
,

𝜕𝑋

𝜕𝛿𝑇 
 as Control derivatives 

where 𝛿𝑒  is elevator input, and 𝛿𝑇 is throttle input.  

Substituting the value of ∆𝑋 relation from the above equation to obtain the equation 

as  

𝜕𝑋

𝜕𝑢
∆𝑢 +

𝜕𝑋

𝜕𝑤
∆𝑤 +

𝜕𝑋

𝜕𝛿𝑒 
∆𝛿𝑒 +

𝜕𝑋

𝜕𝛿𝑇 
∆𝛿𝑇 −  𝑚𝑔 ∆𝜃𝐶𝑜𝑠𝜃0= 𝑚∆𝑢̇ 5.3 

Now re-arranging above equation to deduce the X direction force equation as 

(𝑚
𝑑

𝑑𝑡
 - 

𝜕𝑋

𝜕𝑢
)∆𝑢 –( 

𝜕𝑋

𝜕𝑤
)∆𝑤 + (𝑚𝑔 𝐶𝑜𝑠𝜃0)∆𝜃 = 

𝜕𝑋

𝜕𝛿𝑒 
∆𝛿𝑒 +

𝜕𝑋

𝜕𝛿𝑇 
∆𝛿𝑇  

5.4 

Dividing the above equation by ‘m’ to get a simplified expression as (
𝑑

𝑑𝑡
 - 

𝜕𝑋

𝜕𝑢
)∆𝑢 –

( 
𝜕𝑋

𝜕𝑤
)∆𝑤 + (𝑔 𝐶𝑜𝑠𝜃0)∆𝜃 = 

𝜕𝑋

𝜕𝛿𝑒 
∆𝛿𝑒 +

𝜕𝑋

𝜕𝛿𝑇 
∆𝛿𝑇  where 𝑋𝑢, 𝑋𝑤 are aerodynamic 

derivatives. 

The set of linearized perturbation equations of motion in the X direction is 

expressed as: 
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(
𝑑

𝑑𝑡
 -𝑋𝑢 )∆𝑢 −𝑋𝑤∆𝑤 + (𝑔 𝐶𝑜𝑠𝜃0)∆𝜃0 = 𝑋𝛿𝑒

∆𝛿𝑒 + 𝑋𝛿𝑇
∆𝛿𝑇  

5.5 

Linearized Longitudinal perturbation force and moment equation can be expressed 

as (Nelson, 1989): 

(
𝑑

𝑑𝑡
 -𝑋𝑢 )∆𝑢 −𝑋𝑤∆𝑤 + (𝑔 𝐶𝑜𝑠𝜃0)∆𝜃0 = 𝑋𝛿𝑒

∆𝛿𝑒 + 𝑋𝛿𝑇
∆𝛿𝑇                     

5.6 

−𝑍𝑢∆𝑢 + [ (1- 𝑍𝑤̇)
𝑑

𝑑𝑡
− 𝑍𝑤] ∆𝑤 – [ (𝑢0 + 𝑍𝑞) 

𝑑

𝑑𝑡
− (𝑔 𝑆𝑖𝑛𝜃0)]∆𝜃 = 

𝑍𝛿𝑒
∆𝛿𝑒 + 𝑍𝛿𝑇

∆𝛿𝑇  

5.7 

−𝑀𝑢∆𝑢 – (𝑀𝑤̇
𝑑

𝑑𝑡
+ 𝑀𝑤] ∆𝑤 + (

𝑑2

𝑑𝑡2
− 𝑀𝑞

𝑑

𝑑𝑡
)∆𝜃 = 𝑀𝛿𝑒

∆𝛿𝑒 +

𝑀𝛿𝑇
∆𝛿𝑇  

5.8 

𝑍𝑤̇ = −𝐶𝑧𝛼̇  
𝑐

2𝑢0
 
𝑄𝑆

𝑢0𝑚
     

5.9 

  𝑍𝑢 = −𝐶𝑧𝑞  
𝑐

2𝑢0
 
𝑄𝑆

𝑚
 

5.10 

𝐶𝑧𝛼̇ , 𝐶𝑧𝑞 is Z force non-dimensional components contribute pitching motion very little so 

neglected  𝑍𝑞 and 𝑍𝑤̇ effects hence rewriting sets of longitudinal equations in state-

space form 

Where 𝑥 is a state vector, A as a state matrix, 𝑢 refers to the control vector and B is 

the control matrix. Comparing state-space form with generalized state-space 

equation yields 

[

∆𝑢̇
∆𝑤̇
∆𝑞̇

∆𝜃̇

] = 

[
 
 
 
 
𝑋𝑢                       𝑋𝑤                 0                         − 𝑔

   
𝑍𝑢                            𝑍𝑤                 𝑢0                           0
𝑀𝑢 + 𝑀𝑤𝑍𝑢̇

      𝑀𝑤 + 𝑀𝑤̇𝑍𝑤    𝑀𝑞  + 𝑀𝑤̇𝑢0    0

0                                 0                    1                         0]
 
 
 
 

 [

∆𝑢
 ∆𝑤
 ∆𝑞
∆𝜃

]  +  
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Long-Period Approximation 

Approximating longitudinal state-space equation to the long-period mode by 

assuming ∆𝜶 as zero and neglecting pitching moment equation to deduce 

expression of long-period mode.  

The characteristics of long-period mode are changes in altitude, pitch altitude, and 

motion occurring at constant "𝜶" 

∆𝜶 = 
∆𝒘

𝒖𝟎
,  ∆𝜶 = 0 signifies ∆𝑤 = 0 

The simplified state equation is reduced by applying assumptions such as (Nelson, 

1998): 

[
∆𝒖̇
∆𝜽̇

] = [
𝑿𝒖±    −𝑔

−𝒁𝒖

𝒖𝟎
0

] [
∆𝒖
∆𝜽

] 
5.12 

The eigenvalues of matrix A can be solved by |𝜆𝐼 − 𝐴|=0  

𝜆2 − 𝑋𝑢 𝜆 −
𝑍𝑢𝑔

𝑢0
 = 0 5.13 

𝜆𝑙𝑝 = [𝑋𝑢 ± √𝑋𝑢
2 + 4

𝑍𝑢𝑔

𝑢0
] /2 

5.14 

The physical systems are modelled by the second-order differential equation. To 

illustrate aircraft dynamic motion let us consider the mechanical system comprised 

[
 
 
 
 
 

𝑋𝛿𝑒
                                 𝑋𝛿𝑇

𝑍𝛿𝑒
                                   𝑍𝛿𝑇

𝑀𝛿𝑒
+ 𝑀𝑤̇𝑍𝛿𝑒

        𝑀𝛿𝑇
+ 𝑀𝑤̇𝑍𝛿𝑇

            

0                            0           
 ]

 
 
 
 
 

   [
∆𝛿𝑒 

∆𝛿𝑇 
] 

𝑋̇ = 𝐴𝑥 + 𝐵𝑢 

 

5.11 
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of mass, spring, and damper system. The non-homogeneous second-order 

differential equation of the physical system can be explained as: 

𝑚
𝑑2𝑥

𝑑𝑡2 + 𝑐 
𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐹(𝑡) ; 

𝑑2𝑥

𝑑𝑡2 +
𝑐 

𝑚

𝑑𝑥

𝑑𝑡
+

𝑘

𝑚
𝑥 =

𝐹(𝑡)

𝑚
  5.15 

𝑚Where 𝐹(𝑡) is the forced force function. If the driving force is zero, then the 

system response is termed a free response and vice versa referred to as a forced 

response. The differential equation's solution can be expressed in writing by 

substituting as 𝑥 = 𝐴𝑒𝜆𝑡 in the above equation 

𝜆2 𝐴𝑒𝜆𝑡 +
𝑐 

𝑚
𝜆 𝐴𝑒𝜆𝑡 + 

𝑘

𝑚
 𝐴𝑒𝜆𝑡 = 0 or 𝜆2  +

𝑐 

𝑚
𝜆 + 

𝑘

𝑚
 = 0 or 𝜆2  + 2𝜉𝜔𝑛𝜆 +

 𝜔𝑛
2  = 0 

The above phrase refers to the roots of the characteristic equation as 

𝜆1,2 = -
𝑐 

2𝑚
 ± √(

𝑐 

2𝑚
)2 −

𝑘

𝑚
 

Comparing the above equation with characteristic equation of long-period mode 

yields a damping factor and natural frequency as 

𝜔𝑛𝑙𝑝 = √−
𝑍𝑢𝑔

𝑢0
 

5.16 

𝜉𝑙𝑝 = −
𝑋𝑢

2𝜔𝑛𝑙𝑝
 5.17 

Short-period Approximation 

Short-period motion is heavily damped and characterized by assuming ∆𝑢 = 0 and 

leaving the X-force equation. The change in AOA and the motion that continues 

for several seconds at a constant speed are the hallmarks of short-period mode. 

The simplified state equation is reduced by applying assumptions such as(Nelson, 

1998): 



82 
 

[
∆𝑤̇
∆𝑞̇

] = [
𝑍𝑤 𝑢0

    𝑀𝑤 + 𝑀𝑤̇𝑍𝑤    𝑀𝑞  + 𝑀𝑤̇𝑢0
] [

∆𝑤
∆𝑞

] 
5.18 

In terms of AOA using the expression,  ∆𝜶 = 
∆𝒘

𝒖𝟎
  the equation can be rewritten as  

[
∆𝛼̇
∆𝑞̇

] = [

𝑍𝛼

𝑢0
1

    𝑀𝛼 + 𝑀𝛼̇  
𝑍𝛼

𝑢0
   𝑀𝑞  + 𝑀𝛼̇

] [
∆𝛼
∆𝑞

] 

5.19 

The eigenvalues of the above state equation are estimated by using the expression 

|𝜆𝐼 − 𝐴|=0  

The characteristic equation of the above expression can be written as 

𝜆2 − (𝑀𝑞 + 𝑀𝛼̇ +
𝑍𝛼

𝑢0
) 𝜆 + 𝑀𝑞

𝑍𝛼

𝑢0
− 𝑀𝛼 = 0 5.20 

The roots of the above characteristic equation are: 

𝜆𝑠𝑝=[(𝑀𝑞 + 𝑀𝛼̇ +
𝑍𝛼

𝑢0
) ± [(𝑀𝑞 + 𝑀𝛼̇ +

𝑍𝛼

𝑢0
)
2

− 4(𝑀𝑞
𝑍𝛼

𝑢0
− 𝑀𝛼)]

1

2]/2 
5.21 

The characteristic equation and the above equation being compared of short-period 

mode yields a damping factor and natural frequency as(Nelson, 1998) 

𝜔𝑛𝑠𝑝 = [(𝑀𝑞

𝑍𝛼

𝑢0
− 𝑀𝛼)]

1/2

 
5.22 

𝜉𝑠𝑝 = − [𝑀𝑞 + 𝑀𝛼̇ +
𝑍𝛼

𝑢0
] /(2𝜔𝑛𝑠𝑝) 5.23 

The flight control designer handles the flying quality of aeroplane by estimating 

short- and long-period damping and frequency of Hansa-III by referring to Table 

5 

𝑉𝐻 = 
𝑙𝑡×𝑆𝑡

𝑆×𝐶̅
  = 

3.624×2.04

12.47×1.21
 = 0.489 

η = 
𝑄𝑡

𝑄𝑤
  < 1 (Assume tail efficiency factor as unity) 

𝐶𝑚𝛼̇̇
= -2𝐶𝐿𝛼𝑡

 η𝑉𝐻
𝑙𝑡

𝑐̅

𝑑€

𝑑𝛼
  = 

−0.7797

1.21
 = -0.644 
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𝑀𝛼 = 𝑢0𝐶𝑚𝛼

𝑄𝑆𝐶̅

𝑢0𝐼𝑦𝑦
   = -4.379/s   𝑢0= 36.244m/s; 𝐶𝑚𝛼

= -0.4259 

𝑀𝑞 = 𝐶𝑚𝑞
 

𝐶̅

2𝑢𝑜

𝑄𝑆𝐶̅

𝐼𝑦𝑦
 = 

−144.47 

72.48
 = -1.99/s 

𝑀𝛼̇= 𝐶𝑚𝛼̇
 
𝑄𝑆𝐶̅

𝐼𝑌𝑌

𝐶̅

2𝑢𝑜
 = -0.1105/s 

𝐶𝑍𝛼
= - [(𝐶𝐿𝛼

+ 𝐶𝐷0
)] = -6.4908 

𝑍𝛼 = 𝐶𝑍𝛼
 
𝑄𝑆

𝑚
 = -68.040 

Estimating un-damped natural frequency and damping ratio of Short-period and 

long-period mode by substituting values of non-dimensional stability and control 

derivatives from the above equations 

Short-period Approximations 

𝑤𝑛𝑠𝑝
 = √

𝑍𝛼𝑀𝑞

𝑢0
−𝑀𝛼  =√

(−68.040×−1.99)

36.244
− (−4.379) = √

135.399

36.244
  = 2.84 rad/s     

𝑓𝑛𝑠𝑝
 = 

2.84

6.28
 = 0.45/s 

ξ𝑠𝑝=  −
(𝑀𝑞+𝑀𝛼̇+

𝑍𝛼
𝑢0

)

2𝑤𝑛𝑠𝑝

 =   
3.9975

5.68
 = 0.70 

Long-period Approximations 

𝑤𝑛𝑝
 = √

−𝑍𝑢𝑔

𝑢0
  

ξ𝑝 = 
−𝑋𝑢

2𝑤𝑛𝑝

 

𝑋𝑢 = 
−[𝐶𝐷𝑢+2𝐶𝐷0]𝑄𝑆

𝑚𝑢0
 = 

[−3𝐶𝐷0]𝑄𝑆

𝑚𝑢0
 =-

0.1224×630.47×12.47

27,183
 = -0.0354/s      𝐶𝐷𝑢

is 

neglected at low flight speed; subsonic a/c 

𝑍𝑢= 
𝐶𝑍𝑢𝑄𝑆

𝑚𝑢0
 =

[ {
−𝑀2

1−𝑀2}𝐶𝐿0  −2𝐶𝐿0]𝑄𝑆

𝑚𝑢0
 = 

[−2𝐶𝐿0]𝑄𝑆

𝑚𝑢0
  =

−0.458×630.47×12.47

27,183
 = -0.1303/s    ; 

Mach is neglected at subsonic flight 

𝑤𝑛𝑝
=  √

−𝑍𝑢𝑔

𝑢0
 = √

1.2782

36.244
 = 0.1877rad/s 
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ξ𝑝 = 
−𝑋𝑢

2𝑤𝑛𝑝

 = 
−(−0.0354)

2×0.1877
 = 0.0942 

𝛌1,2 =  -ξ𝑝𝑤𝑛𝑝
± i𝑤𝑛𝑝

√1 − ξ𝑝
2
 

𝛌1,2 =  -0.0176 ± i0.186 

 

Non- dimensional 

Derivative 

Value Non- dimensional 

Derivative 
Value 

𝑀𝛼 (s-2) -4.379 𝑋𝑢 (s-1) -0.0354 

𝑀𝑞 (s
-1) -1.99 𝑍𝑢 (s-1) -0.1303 

𝑀𝛼̇ (s-1) -0.1105 𝐶𝑚𝛼̇̇
 -0.644 

ξ𝑝 0.0942 𝑤𝑛𝑝
 (rad/s) 0.1877 

ξ𝑠𝑝 0.70 𝑤𝑛𝑠𝑝
 (rad/s) 0.45 

 

Table 5.2: Estimation of Non-dimensional derivatives using Analytical Method 

Non-dimensional Derivatives of different elevator control Inputs Multistep, 

doublet, and Pulse estimated using the Maximum likelihood algorithm and results 

were validated with analytical calculations derived in the above section as discussed 

in Table 5.3 

 

Table 5.3: Estimation of short-Period Damping ratio and frequency 



85 
 

 

Fig 5.10 Short-period Frequency and Damping ratio 

The short period frequency and damping ratio of different elevator inputs M1, M2, 

M3, M4, M5, D1, P1, and P2 is reflected in figure 5.10 and table 5.3 for assessment 

of flying handling quality. As the dynamic quality of the aircraft is closely related 

to its ability to fly, it is a difficult task for a flight control designer to create a 

controller with good dynamic properties (JAISWAL & PRAKASH, 2022) [ref]. 

When investigating pilot handling, the damping and frequency of both short- and 

long-term periods are crucial. 

Lateral Stability 

Aircraft Lateral stability also referred to as ‘roll stability’ is the tendency of an 

aircraft to attain a trim state about the longitudinal axis. Lateral Stability provides 

rolling motion by moving aircraft in forward and rearward directions. Ailerons are 

control surfaces that contribute lateral motion of an aircraft. 

Directional Stability 

The synonym term ‘Yaw stability’ is the tendency of an aircraft to attain a trim state 

about the normal axis. Directional Stability provides yawing motion by moving 

aircraft in the left and right directions. Rudders are control surfaces that contribute 

directional motion of an aircraft. 

Lateral- Directional modes of motion: 

-1

0

1

2

3

4

M1 M2 M3 M4 M5 D1 P1 P2

V
al

u
e

Data Set

Short- Period Mode

Short period frequency short period damping ratio



86 
 

Spiral divergence 

It is a phenomenon that occurs when an aircraft is directionally stable but laterally 

unstable. This instability produces spiralling motion have characteristics of slowly 

convergent and divergent states. This spiral is sometimes difficult to handle if 

preventive measures are not taken at the right time by the pilot.  

Dutch-roll mode 

It is a coupled phenomenon of lateral-directional motion that combines the 

characteristics of rolling, yawing, and side-slipping. The lightly damped 

oscillations have low frequency with a period of 3-15sec. Iceskater is the perfect 

example to resemble its features. 

Rolling mode 

Directional divergence is a synonym for roll mode. This motion has characteristics 

of high convergence with low frequency. An ever-increasing sideslip angle should 

be avoided if disturbed from equilibrium. This instability mode is avoided by 

designing a proper vertical tail surface. 

5.3 LONGITUDINAL EQUATION IN WIND AXIS 

Derivation to establish state-space linearized longitudinal perturbation equation to 

estimate the aircraft transfer function(Klien & Morelli, 2006) (Jaiswal et al., 

2020) 

Aircraft sensors like pitot tube measure airspeed V rather than body-axes velocities 

u, v, and w. In the same manner, sensors attached in aircraft measure the angle of 

attack, and sideslip angle thus it is identified that non-dimensional aerodynamic 

coefficients are characterized as 𝛼, 𝛽, 𝑉 having a relationship as: 

 

           α= tan−1 𝑤

𝑢
                                                                                                           5.24 

            β=sin−1 𝑣

𝑉
                                                                                                 5.25 
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Where airspeed is denoted as    𝑉 = √𝑢2 + 𝑣2 + 𝑤2 

 

 

 
 

                                 Fig 5.11 Estimation of Variables𝛼, 𝛽, 𝑉 from Wind-axis 

Referring to the figure 5.11 in terms of 𝛼, 𝛽, 𝑉 as  

𝑢 = V cos 𝛼 cos β 5.28 

Differentiating equation, a and b to get a simplified equation as(Klien & Morelli, 

2006):  

𝑉̇ =  
1

𝑉
(𝑢𝑢 + 𝑣𝑣̇̇ + 𝑤𝑤)̇  

5.29 

𝛼̇ = (
𝑢𝑤̇ − 𝑤𝑢̇

𝑢2 + 𝑤2

̇
) 

5.30 

𝛽̇ =
(𝑢2 + 𝑤2)𝑣̇ − 𝑣(𝑢𝑢̇ + 𝑤𝑤)̇

𝑉2√𝑢2 + 𝑤2
 

5.31 

𝑣 = 𝑉 Sin β 5.26 

𝑤 = V Sin 𝛼 cos β 5.27 

V 

v 

 w 

α 

β 

u 



88 
 

Rewriting longitudinal force equation in wind axes by substituting values of 

𝑢̇, 𝑣̇, 𝑤̇ from Appendix C 5.55- 5.57 and 𝑢, 𝑣, 𝑤  from the above equations into 

above 5.29-5.31 to get expression in terms of 𝛼, 𝛽, 𝑉 

𝑉̇ = −{
𝑞̅.𝑠

𝑚.
} 𝐶𝐷 + g (cosϕcos𝜃 sin 𝛼 𝑐𝑜𝑠𝛽 + sinϕcos𝜃𝑠𝑖𝑛𝛽 −

𝑠𝑖𝑛𝜃 cos 𝛼 𝑐𝑜𝑠𝛽) + {
𝑇

𝑚.
} cos 𝛼 𝑐𝑜𝑠𝛽 

5.32 

𝛼̇ =  − {
𝑞̅.𝑠

𝑚.𝑉𝑐𝑜𝑠𝛽
} 𝐶𝐿 + 𝑞 + 

𝑔

𝑉𝑐𝑜𝑠𝛽
(𝑐𝑜𝑠𝜙cos𝜃𝑐𝑜𝑠𝛼 + sin𝜃 sin 𝛼) -

{
𝑇

𝑚.𝑉𝑐𝑜𝑠𝛽
} sin 𝛼 − 𝑡𝑎𝑛𝛽(𝑝 cos 𝛼 + 𝑟 sin 𝛼)                

5.33 

Assuming β=ϕ=0 for longitudinal motion and using trigonometric identities 

Sin(A-B), and Cos(A-B) as: 

 

Force Equation(Klien & Morelli, 2006) 

𝑉̇= −{
𝑞̅.𝑠

𝑚.
} 𝐶𝐷 + g 𝑠𝑖𝑛(𝛼 − 𝜃) + {

𝑇

𝑚.
} cos 𝛼 5.34 

𝛼̇ =  − {
𝑞̅.𝑠

𝑚.𝑣
} 𝐶𝐿 + 𝑞 + 

𝑔

𝑉
𝑐𝑜𝑠(𝛼 − 𝜃) -{

𝑇

𝑚.𝑣
} sin 𝛼 5.35 

𝜃̇ = 𝑞 5.36 

Moment Equation(Klien & Morelli, 2006)  

𝑞̇ = (
𝑞̅.𝑠.𝑐

𝐼𝑦
) . 𝐶𝑚 + {

𝑇

𝐼𝑌𝑌
} 𝑙𝑡𝑧 

5.37 

   

To analyse the aircraft dynamics, the aircraft is modelled in terms of mathematical 

equations as aerodynamic stability and control derivatives shown below(Nelson, 

1998) 

𝐶𝐿={𝐶𝐿0
+ 𝐶𝐿𝛼

. 𝛼 + 𝐶𝐿𝑞
.

𝑞𝑐̅

2𝑈1
+ 𝐶𝐿𝛿𝑒

. 𝛿𝑒} 5.38 
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𝐶𝐷={𝐶𝐷0
+ 𝐶𝐷𝛼

. 𝛼 + 𝐶𝐷𝑞
.

𝑞𝑐̅

2𝑈1
+ 𝐶𝐷𝛿𝑒

. 𝛿𝑒} 5.39 

𝐶𝑚={ 𝐶𝑚0
+ 𝐶𝑚𝛼

. 𝛼 + 𝐶𝑚𝑞
.

𝑞𝑐̅

2𝑈1
+ 𝐶𝑚𝛿𝑒

. 𝛿𝑒  } 5.40 

Assumption: thrust setting angle = 0, Flight path γ = constant at cruise state, flight 

velocity = constant for short period mode 

𝛼̇ =  − {
𝑞̅. 𝑠

𝑚. 𝑣
} 𝐶𝐿 + 𝑞 

5.41 

𝜃̇ = 𝑞 5.42 

𝑞̇ = (
𝑞̅. 𝑠. 𝑐

𝐼𝑦
) . 𝐶𝑚 

5.43 

Simplifying set of equations 

𝛼̇ = 𝑞 − 
𝜌𝑉𝑆𝑤

2𝑚
 {𝐶𝐿0

+ 𝐶𝐿𝛼
. 𝛼 + 𝐶𝐿𝑞

.
𝑞𝑐̅

2𝑈1
+ 𝐶𝐿𝛿𝑒

. 𝛿𝑒} 
5.44 

𝜃̇ = 𝑞 5.45 

𝑞̇ =
𝜌𝑉2𝑆𝑤𝑐̅

2𝐼𝑦
 { 𝐶𝑚0

+ 𝐶𝑚𝛼
. 𝛼 + 𝐶𝑚𝑞

.
𝑞𝑐̅

2𝑈1
+ 𝐶𝑚𝛿𝑒

. 𝛿𝑒 } 
5.46 

Substituting values of 𝑆𝑤 , 𝑐 ,̅  𝑉 , 𝜌 , 𝐼𝑦 & 𝑚 from Table 5 

𝛼̇ = 𝑞 −
0.96 𝑋 36 𝑋 12.47

2 𝑋 750
 [𝐶𝐿0

+ 𝐶𝐿𝛼
. 𝛼 + 𝐶𝐿𝑞

.
𝑞(1.211)

2 𝑋 36
+ 𝐶𝐿𝛿𝑒

. 𝛿𝑒] 

𝜃̇ = 𝑞 

𝑞̇ =
0.96 𝑋 (36)2 𝑋 12.47 𝑋 1.21

2 × 907
 { 𝐶𝑚0

+ 𝐶𝑚𝛼
. 𝛼 + 𝐶𝑚𝑞

.
𝑞(1.211)

2 𝑋 36

+ 𝐶𝑚𝛿𝑒
. 𝛿𝑒 } 

Substituting values of derivatives of S & C from ML method using multistep 

HALM5 Input (Refer Chapter 4, Table 4.3)  
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𝛼̇ = 𝑞 − 0.0646 −  1.851 . 𝛼 −  0.1793 . 𝑞 +  0.00562 . 𝛿𝑒  

𝜃̇ = 𝑞  

𝑞̇ = 0.806 −  4.403 . 𝛼 −  2.01 . 𝑞 − 8.95 . 𝛿𝑒   

Solving equation: 

𝛼̇ = 0.8207 . 𝑞 −  1.851 . 𝛼 +  0.00562 . 𝛿𝑒 − 0.0646 5.47 

𝑞̇ = − 2.01 . 𝑞 −  4.403 . 𝛼 − 8.95 . 𝛿𝑒 + 0.806  5.48 

𝜃̇ = 𝑞 5.49 

Generalized State equation in Matrix form may be written: 

𝑥̇ = A x + B u 5.50 

y = C x +D u                                                                                                                                                         5.51 

To define A(plant matrix), B(control matrix), C(output matrix), and D(null matrix) 

as they are reflected in the above equation are compared with state space matrix 

form as  A, B, C,& D. 

 

[
𝛼̇
𝑞̇

𝜃̇

] =  [
−1.851 0.8207 0
−4.403 −2.01 0

0 1 0
] [

𝛼
𝑞
𝜃
]+ [

−0.0056 −8.95
−0.0646 −0.806

0 0
]  [δ]                                 

 

5.52 

  

[𝜃] = [0 0 1] [
𝛼
𝑞
𝜃
] + [0][δ]                                                

5.53 

The transfer function is required to construct a PID Controller. The transfer function 

of short period mode can be represented by using the formulae discussed below 

T.F =  |
𝐶 𝐴𝑑𝑗 (𝐼𝑠−𝐴)𝐵

𝐼𝑠−𝐴
| + D  
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The following is a representation of the transfer function for the elevator deflection 

angle from the pitch angle: G(s) 

 

G(s) = 
θ(s)

δ(s)
 = 

−{8.95s+16.5313}

s3+3.861s2+7.33141s
 5.54 

 

Open loop Transfer function 

 
Fig.5.12 Open Loop Control system of Hansa-III 

 

The Open loop CS as illustrated in Fig.5.12 is independent of response in an action 

of control. The following is a representation of the estimated transfer function for 

the pitch angle to the elevator deflection angle G3(s) 

 

G3(s) = 
θ(s)

δ(s)
 = 

−{8.95s+16.5313}

s3+3.861s2+7.33141s
 

 

5.55 
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Fig.5.13 Open Loop Step Response of Hansa-III 

 

The amplitude of the step response as displayed in Figure 5.13 of Open-loop CS is 

undamped which justifies to design of the controller in Closed-loop. 

 

Closed loop Transfer function 

 

 

Fig. 5.14 Closed Loop Control system of Hansa-III 

 

The controller of closed-loop CS displayed in Fig 5.14 depends on the output 

response termed feedback control system. The transfer function G4(s) is the output 

response of the input fed to the control system 

G4(s) = 
θ(s)

δ(s)
 = 

{55.94s+103.3}

s4+10.07s3+31.18+101.8s+103.3
 

5.56 
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                                Fig. 5.15 Closed-loop Step- response of Hansa-III 

 

The amplitude of the step response as displayed in Figure 5.15 of Closed-loop CS 

is damped and does not satisfy design requirements. 

 

5.4 PID TUNING METHODS 

PID Controller 

PID stands for proportional, Integral, and derivative. This controller boosts the 

system’s stability and reduces steady-state error. It is used in modern industry as an 

automatic process control for the flight control system. The three terms P, I, and D 

effectively control the system dynamics by calculating the error between the 

measured value and the desired value. The gain of these three parameters is tuned 

as per the system design requirements. The feedback control system uses a PID 

controller to precisely regulate the intended output. (Nelson, 1989) 
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u(t) = 𝐾𝑃 e(t) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡 +𝐾𝐷 
𝑑

𝑑𝑡
e(t)  5.57 

Taking Laplace transformation of the above equation and reducing it to 

U(s) = [𝐾𝑃 + 
𝐾𝐼

𝑠
 + 𝐾𝐷𝑠] E(s) 5.58 

The transfer function of the PID Controller 𝐺𝑃𝐼𝐷=  
U(s)

E(s)
 = 𝐾𝑃 + 

𝐾𝐼

𝑠
 + 𝐾𝐷𝑠  

=[
𝐾𝑃 S+𝐾𝐼 + 𝐾𝐷𝑆2

𝑆
] 

PID tuning methods are used to compare the performance characteristics of the 

controller. Based on the control system response in terms of settling time, steady 

state error, percent overshoot, gain value and rise time the desirable methodology 

is adopted. These methods are listed into two categories 

1. Closed Loop Tuning Method 

Closed-loop tuning methods are used when the control system is run in a closed 

loop and the controller is tuned automatically. Some closed-loop methods are: 

Ziegler Nicholas (ZN), Modified Ziegler Nicholas(MZN), Tyreus – Luyben(TL), 

Astrom – Hagglund (AH) (Mohammad Shahrokhi and Alireza Zomorrodi, 2005) 

2. Open Loop Tuning Method 

Open-loop tuning technique is used when the control system is run in an open loop 

and the controller is tuned manually. Open-loop Ziegler Nicholas, CHR, Cohen and 

Coon, and Fertik are a few examples of open-loop techniques. (Mohammad 

Shahrokhi and Alireza Zomorrodi, 2005) 

5.4.1 CLOSED LOOP TECHNIQUES 

1. Ziegler Nicholas 

This trial and error technique was first put forward by Ziegler and Nicholas in 1942 

for tuning gains of the PID Controllers. This approach was also used to tune PID 

Controller of a quadrotor helicopter for attitude determination(He & Zhao, 2014). 

Both open-loop and closed-loop control systems can make use of it and apply it 
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when the mathematical model is unavailable(V. Kumar & Patra, 2016). This 

method determines gain by considering two parameters such as ultimate gain 

(Ku)and (Tu) as the period of oscillation at Ku. Process modelling is not required for 

this technique. Some consequences of ZN are time-consuming due to several 

iterations while estimating ultimate gain, and in-applicability for an open-loop 

unstable process. This tuning technique shows smooth transient behaviour. The 

block diagram shown in Figure 5.16 is used to estimate the gain parameters of PID 

while adopting various tuning techniques discussed in Table 5.4 using the software 

SIMULINK and algorithm (refer Appendix B 1).  The steps followed to determine 

the value of 𝐾𝑢 and 𝑇𝑢 is stated below: 

Step 1. Initializing KI and  KD to be zero and the iterating numeric value of KP to 

attain marginal stability curve in Scope 

Step 2. Estimating the value of 𝐾𝑢 and 𝑇𝑢 from neutrally stable curve as displayed 

in the figure 5.17 (1-2)  

Step 3. The gain of 𝐾𝑝 becomes 𝐾𝑢 when the system achieves neutral oscillation 

and 𝑇𝑢 reflects the time- period of oscillations between one cycle occurring at an 

ultimate gain. 

Step 4.  The gain value for this research study is estimated are  𝐾𝑢 = 1.3400, 𝑇𝑢(𝑠) 

= 1.5040 s 

 

Fig 5.16 Simulink block diagram of estimating 𝐾𝑢 and 𝑇𝑢 
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Fig 5.17(1-4) Estimation of KU ,TU , Step response and Simulink Block diagram 

of PID Controller: ZN 

 

The step response in Fig 5.17(1-4) shows decayed oscillatory motion having 

damped amplitude signifies the stability of the pitch controller.  

SNo Methods 𝑲𝑷 𝑲𝑰 𝑲𝑫 

1. PID 0.6𝐾𝑢 
(0.6𝐾𝑢)(

2

𝑇𝑢

) 
(0.6𝐾𝑢)(𝑇𝑢

/8) 

2. PD 0.8𝐾𝑢 - 0.1*𝐾𝑢*𝑇𝑢 

3. PI 0.45𝐾𝑢 (0.45𝐾𝑢)(
1

0.83𝑇𝑢
) - 

Table 5.4 Classical PID Tuning Parameters: ZN(Deepa & Sudha, 2016) 

 

Fig 5.18 Simulink block diagram of 𝑃𝐼 Controller: ZN 
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Fig 5.19 Step response of aircraft dynamics with PI Controller: ZN 

 

 

Fig 5.20 Simulink block diagram of 𝑃𝐷 Controller 
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Fig 5.21 Step response of aircraft dynamics with PD Controller 

 
S.No Controller 𝐾𝑃 𝐾𝐼  𝐾𝐷 

1. Classic PID 0.8040 1.0691 0.1512 

2. PD 0.2015 - 1.0720 

3. PI 0.6030 48.117 - 

Table 5.5 Classical PID, PD, PI Tuning Parameters Value: ZN 

 

The gain parameters of PID, PD and PI while adopting ZN are discussed in Table 

5.5 using Table 5.4 to illustrate the type of controller such as PID, PI, and PD 

have high KI gain value that affects overall system performance &  

The gain parameters of PID presented in Table 6 illustrate that all types of controller 

have high value of KI which overall affects the system performance and leads to a 

responsive steady-state system. 

 

2. Modified Ziegler Nicholas 

This method is utilised when it is difficult to quantify oscillation caused by a 1/4 

decay ratio for some loops' and when set point changes for significant overshoots 

cannot be measured properly. This tuning technique shows smooth transient 

behaviour. The gain values 𝑘𝑃, 𝑘𝐼 , 𝑘𝐷using modified Ziegler Nicholas setting is 

shown below(Basu et al., 2016)(Deepa & Sudha, 2016). The step response 
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illustrating aircraft dynamics are shown in Fig 5.22 using an algorithm (refer to 

Appendix B2) 

SNo Methods 𝑲𝑷 𝑲𝑰 𝑲𝑫 

1. PID 00.33𝐾𝑢 0.5𝑇𝑢 0.33𝑇𝑢 

  0.4422 0.7520 0.4963 

Table 5.6 Classical PIDTuning Parameters: MZN 

 

 

Fig 5.22 Step response and Simulink Block diagram of PID Controller using 

MZN 

Figure 5.22-unit step response depicts an aperiodic, non-oscillatory motion of the 

pitch controller that is both highly stable and responsive in steady state. 
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3. Tyreus Luyben 

This technique is similar to Ziegler Nicholas and operates for PID and PI 

Controllers. The gain values 𝑘𝑃, 𝑘𝐼 , 𝑘𝐷 is different for this controller setting and 

mentioned below. It is time-consuming and attains marginal stability. This tuning 

technique shows smooth transient behaviour. The two characteristics of ultimate 

gain and the time-period is calculated using the same procedure as discussed in 

Ziegler Nicholas (Basu et al., 2016)(Deepa & Sudha, 2016). The step response 

illustrating aircraft dynamics is shown in Fig. 5.25 using algorithm (refer to 

Appendix B3) 

S No Methods 𝑲𝑷 𝑲𝑰 𝑲𝑫 

1. PID 𝐾𝑢/ 3.2 (2.2𝑇𝑢) 𝑇𝑢/6.3 

2. PI 𝐾𝑢/ 3.2 (2.2𝑇𝑢) − 

Table 5.7 Classical PIDTuning Parameters: TL 

 

Fig 5.23 Simulink Block diagram of PID Controller using TL 

 

Fig 5.24 Simulink Block diagram of PI Controller using TL 
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PID                                                                   

 

                                                               PI 

Fig 5.25 Step response of PID and PI Controller using TL 

S.No Methods 𝐾𝑃 𝐾𝐼  𝐾𝐷 

1. PID 0.4188 0.2376 3.3088 

2. PI 0.4188 3.3088 0 

 

Table 5.8 Classical PID, PI Tuning Parameters Value: TL 
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As discussed in Table 5.8, the unit step response in Fig. 12 illustrates an oscillatory 

motion of the pitch controller with a high amount of proportional gain, which 

causes the entire system to create constant steady state error and system sensitivity 

is reduced. 

4. Astrum-Haglund 

This technique is initiated by Astrum-Haglund and uses non-linear feedback. The 

gain values 𝑘𝑃, 𝑘𝐼 , 𝑘𝐷 is different for this controller setting and are mentioned 

below. The two characteristics such as ultimate gain and the Time-period are 

calculated from limit cycle oscillation. This tuning technique shows oscillatory 

transient behaviour and does not involve a derivative filter (Basu et al., 

2016)(Deepa & Sudha, 2016). The step response illustrating aircraft dynamics is 

shown in Fig 5.26 using an algorithm (Refer to Appendix B4) 

S.No 𝐾𝑃 𝐾𝐼  𝐾𝐷 

1. 0.32𝐾𝑝𝑢 0.94𝑇𝑢 0 

2. 0.4422 1.4138 0 

 

Table 5.9 Classical PID Tuning Parameters: AH 
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Fig 5.26 Step response and Simulink Block diagram of PID Controller: AH 

The oscillatory motion in Fig.5.26 with the un-damped amplitude of the pitch 

controller indicates system instability in the unit step response. Table 5.9's PID gain 

parameters provide as an excellent example of steady-state performance. 

In a similar pattern, all PID Closed-loop tuning approaches are applied to Multistep, 

Doublet, and Pulse Input datasets for gain optimization and results are compared 

using tabular and graphical representation in Appendix D1, D2. 

5.4.2 OPEN-LOOP TECHNIQUE 

1. Open-loop Ziegler Nicholas 

This method is similar to Ziegler Nicholas but the dynamics of the plant are 

modelled by the dead time model plus the first-order model given by expression 

(Basu et al., 2016)  

𝐺𝑚(𝑠) =
𝑘𝑚𝑒−𝑑𝑠

Ω𝑚𝑠 + 1
 

5.59 

Where Ω𝑚 is dead time model, and 𝑘𝑚 is the model gain. The gain parameters 

 𝑘𝑃, 𝑘𝐼 , 𝑘𝐷 is obtained by using Table 5.10 
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SNo Methods 𝑲𝑷 𝑲𝑰 𝑲𝑫 

1. PID 1.2

𝑘𝑚

Ω𝑝𝑛

𝑑
 

2d 0.5𝑑 

2. P 1

𝑘𝑚

Ω𝑚

𝑑
 

- - 

3. PI 0.9

𝑘𝑚

Ω𝑚

𝑑
 

𝑑

0.3
 

- 

Table 5.10 Classical PIDTuning Parameters: Open-loop ZN(Mohammad 

Shahrokhi and Alireza Zomorrodi, 2005) 

 

2. CHR Method 

 

With the 20% overshoot and no overshoot options offered by this CHR (Chien, 

Hrones, and Reswich) technique provides the fastest response. This 

methodology is a modification of the Open-loop ZN technique(Mohammad 

Shahrokhi and Alireza Zomorrodi, 2005)(Ahn et al., 2009). The parameters 

obtained using the dead time model plus the first-order model are shown in 

Table 5.11 

SNo Methods 𝑲𝑷 𝑲𝑰 𝑲𝑫 

1. PID 0.95

𝑘𝑚

Ω𝑚

𝑑
 

2.4d 0.42𝑑 

2. P 0.3

𝑘𝑚

Ω𝑚

𝑑
 

- - 

3. PI 0.6

𝑘𝑚

Ω𝑚

𝑑
 

4𝑑 - 

Table 5.11 Classical PIDTuning Parameters : CHR (Mohammad Shahrokhi and 

Alireza Zomorrodi, 2005) 

 

3. Cohen-coon Method 

This technique involves process reaction curve as the first step and secondly 

estimating parameters by approximating the dead time model plus first-order model 

using the following relationship [ref](Mohammad Shahrokhi and Alireza 

Zomorrodi, 2005) 
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Ω𝑚 = 
3

2
 (𝑡2 − 𝑡1) 

5.60 

𝑑𝑚 = Ω2 − Ω𝑚 5.61 

Where 𝑡1, 𝑡2= time at ∆𝑐 = 0.283∆𝑐𝑠, ∆𝑐 = 0.632∆𝑐𝑠, and C is plant output. 

Once Ω𝑚, 𝑑𝑚, 𝑎𝑛𝑑 𝑘𝑚is known then tuning parameters are estimated using the 

dead time model plus the first order model is shown in Table 5.12 

 

SNo Methods 𝑲𝑷 𝑲𝑰 𝑲𝑫 

1. PID 1

𝑘𝑚

Ω𝑚

𝑑
(
4

3
+

𝑑

4Ω𝑚
) 𝑑

32 + 6𝑑/Ω𝑚

13 + 8𝑑/Ω𝑚
 d

4

11+2𝑑/Ω𝑚
 

2. P 1

𝑘𝑚

Ω𝑚

𝑑
(1 +

𝑑

3Ω𝑚
) 

- - 

3. PI 1

𝑘𝑚

Ω𝑚

𝑑
(
9

10

+
𝑑

12Ω𝑚
) 

𝑑
30 + 3𝑑𝑚/Ω𝑚

9 + 20𝑑𝑚/Ω𝑚
) 

- 

4. PD 1

𝑘𝑚

Ω𝑚

𝑑
(
5

4
+

𝑑

6Ω𝑚
) 

 
𝑑

6 − 2𝑑/Ω𝑚

22 + 3𝑑/Ω𝑚
 

Table 5.12 Classical PIDTuning Parameters: Cohen - Coon(Mohammad 

Shahrokhi and Alireza Zomorrodi, 2005) 

 

 

4. Fertick Method 

This technique is used in open-loop and uses the dead time model plus first-order 

model for the model using expression 

𝐺𝑚(𝑠) =
𝑘𝑒−𝑑𝑠

Ω𝑠 + 1
 

5.62 

𝛼𝐹 = 
𝑑

𝑑+Ω
 = 

𝑇𝑑

𝑇𝑝𝑠
 5.63 

 

Where 𝛼𝐹 is fertick controllability, 𝑇𝑑 = 𝑑, 𝑇𝑝𝑠 = 𝑑 + Ω. PID Controller is not 

applicable for plant whose 𝛼𝐹 > 0.5 
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5.5 CLASSICAL CONTROL APPROACH 

Root Locus 

The methodology to design flight control laws includes classical and modern 

control theory. In the past few decades, the FCS flight control system has been 

designed by making use of the root locus (Time- domain technique), or frequency 

domain technique. One of the best classical control techniques is the root locus 

introduced by W.R. Evan in 1948(Stojiljković et al., 2009) (Nelson, 1989). This 

methodology is simple, handy, and has system transparency as engineers can 

identify the gaps and modify them as per design requirements. It is also applied to 

design pitch attitude CS of F-104A aircraft(Stojiljković et al., 2009). The dynamics 

of the physical system are visible while operating. It is a graphical representation 

to analyse control systems. The necessary points to be noted while defining the 

stability of closed-loop systems are: 

1. The closed-loop poles must be located in the left half of the complex plane. 

2. The wider the gap of closed-loop poles from imaginary axes more system 

stability. 
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Fig 5.27  Root-Locus of Uncompensated Controller 

As per the figure, the poles and zeroes lie at the left half of the complex plane which 

suggests the system stability is calculated using closed-loop TF G3 

G3= 
55.94𝑠+103.3

𝑠4 +10.07 𝑠3+31.18 𝑠2+45.82𝑠 
 

Control system Toolbox is used to model, analyse, and design control systems in 

the time and frequency domain. The Root locus is viewed and the controller 

structure is manipulated in this toolbox. This toolbox is used to adjust the location 

of poles to attain desired system performance by varying system parameters in real-

time. This technique also depicts system stability by having knowledge of pole 

location and estimating the natural frequency (𝑤𝑛), and damping ratio (ζ) of the 

system. At a similar time, the bode plot, Nyquist plot, step response, gain, and phase 

margin are also viewed to modify the controller structure. Classical methods are 

limited to SISO systems while modern control theory has the scope of MIMO 
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system designs thus modern approaches are also covered in this study in the next 

section. 

Bode Plot 

This graphical method is introduced by the bode for stability analysis in the 

frequency domain. It contains two plots such as magnitude as well as phase plots 

which are plotted with logarithm values of frequency to give system information 

thus termed logarithm plots. Magnitude in decibels and phase angle in the degree 

of the LTI system are plotted for frequency. 

Gain Margin:  The gain at which the system stabilizes. It occurs at 𝜔𝑝𝑐 (phase cross-

over frequency) which is defined as frequency at -180o phase angle. If the 

magnitude in decibels of G( 𝑗𝜔) at 𝜔𝑝𝑐 is positive then the gain margin will be 

negative and vice-versa. G.M= Gain at -180o phase. 

Phase Margin: The phase angle at which the system becomes stable. It occurs at 

𝜔𝑔𝑐 (gain cross-over frequency) It is characterized as the frequency at zero decibel 

gain. If the phase in degrees 𝜙𝑔𝑐 is positive than -180o then the phase margin will 

be negative and vice-versa. 

P.M = 180o + Phase at 0db 

The stability criterion is determined by estimating the Gain Margin and phase 

margin from the Bode Plot. The system will be stable if the Gain Margin and Phase 

Margin are both bigger than zero.; If the gain margin is infinite and the phase never 

crosses -180o then too system attains stability. 
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Fig 5.28 Bode-Plot of Uncompensated Controller 

As per Figure 5.28, the value of the Gain margin and phase margin is positive which 

is calculated using closed-loop TF G3 as discussed in the above section concludes 

the system stability. 

5.5.1 PD COMPENSATED CONTROLLER USING ROOT 

LOCUS TECHNIQUE 

Derivative Controller 

This controller produces an output that is derivative of the error signal. This 

controller improves system stability  

The transfer function of the derivative Controller 𝐺𝐷=  
U(s)

E(s)
 = 𝐾𝐷𝑠 
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Integral Controller 

The output of this controller is integral to the error signal. This will raise the 

system's type number which decreases steady state error but stability is decreased. 

The transfer function of the Integral Controller 𝐺𝐼=  
U(s)

E(s)
 = 

𝐾𝐼

𝑆
 

PD Controller 

PD stands for proportional, and derivative. The derivative filter is used for transient 

response analysis. The two terms proportional, and derivative effectively control 

the plant dynamics by producing output which is the combination of output P and 

D Controller. The system's stability will be improved by this combination without 

having an impact on steady-state error. 

The transfer function of the PD Controller 𝐺𝑃𝐷=  
U(s)

E(s)
 = 𝐾𝑃 +𝐾𝐷𝑠 = 𝐾𝑃(1 +

𝐾𝐷

𝐾𝑃
𝑠) 

where 
𝐾𝐷

𝐾𝑃
  denotes 𝑇𝐷. 

 

Fig 5.29 Schematic Diagram of PID Controller 
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METHODOLOGY 

 

Fig 5.30 Flowchart to design aircraft Pitch Controller 

 

Control System Design Specification 

1. Settling Time<10sec 

2. Peak Overshoot<20% 

3. Steady State Error<1% 

4. Rise Time<2sec 

5. Gain Margin>6Db 
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6. Phase Margin>45o 

 

5.5.2 UNCOMPENSATED FEEDBACK CONTROL SYSTEM 

STEP1: Dynamics of an uncompensated feedback control system are analysed in 

MATLAB using the control system toolbox. The architecture used while 

designing the compensator is reflected in Fig 5.31 

 

 

Fig 5.31 Uncompensated Feedback Control System 

The uncompensated feedback control system includes elevator servomotor, Hansa-

III pitch dynamics, reference input signal, and scope 
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Fig 5.32 Step- Response of Uncompensated Feedback Control System 

The uncompensated controller's step response as shown in above figure 5.32 

explains the damping of the uncompensated pitch attitude system overshoots with 

31.1% of amplitude 1.31. (It is required to drop down the value of overshoot by 

20% as per design requirements). The oscillations damped gradually with the 

settling time of 5.51 seconds and experienced zero steady-state error which 

illustrates that the Integral controller is not required so a PD controller is designed. 
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Fig 5.33 Root-Locus and Bode-Plot of Uncompensated Feedback Control System 

The root-locus and bode-plot in fig 5.33 depicts the zeroes and poles of the control 

system whereas positive value of the phase margin in the bode plot signifies the 

system stability 
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5.5.3 DESIGN ALGORITHM OF PD COMPENSATED 

CONTROLLER 

1. Define desired control system design specification 

2. Determine dominant poles for desired design specification. 

3. Design Compensator for the controller 

4. Estimate the gain of the control system  

5. Validate the result through SIMULINK software. 

 

STEP 1: Control System Design Specification 

1. Settling Time<10sec 

2. Peak Overshoot<20% 

3. Steady State Error<1% 

4. Rise Time<2sec 

 

STEP 2: Determination of Closed Dominant Pole 

Figure 5.34 below displays the uncompensated controller's root locus which states 

that damping ζ = 0.456 at 20% overshoot thus by visualizing the above figure the 

closed dominant pole is located at -3.74+7.3i and the gain of the system is 1 
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Fig 5.34 Location of Closed Dominant Pole 

As per design specifications, settling time Ts < 10 sec as ζ 𝜔𝑛 = 
4

Ts
 thus ζ 𝜔𝑛= 0.4. 

The damping ratio of SP mode is calculated by relationship as ϴ = cos-1 ζ. Consider 

ζ as 0.456 from the above figure as satisfying the design requirements. The 

estimated angle is found to be 62.87o  

 

 

 

 

 

 

Fig 5.35 Determination of Damping Ratio 

Dominant 

Pole 

ζ 𝜔𝑛= 3.741 

62.87o 

𝜔𝑑 

 𝑗𝜔 

Real 

Axes 
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      Tan(62.87o) = 
7.3

ζ 𝜔𝑛
   thus  ζ 𝜔𝑛 =

7.3

1.951
= 3.741 as per the given figure 5.35, the 

closed dominant poles from origin to s-plane is -3.741± 7.3j which validates the 

point reflected in the above figure. 

 

STEP 3: Design of PD Compensated Controller 

The controller has two complex poles, two real poles, and one zero as shown 

below 

 

Fig 5.36 Root-Locus of PD Compensated Controller 

 

The compensator can be designed by applying the root locus algorithm which is 

estimated by calculating angles from complex poles which is given by A= 180O- 

(Summation of angles made by complex dominant pole to other poles) + 

(Summation of angles made by complex pole to other zeros)  

As reflected below Figure 5.36; the controller has two poles and one zero in Real 

axes thus A is estimated using the following expression as A = 180O- (Summation 

of angles made by complex dominant pole to other poles) 

A = 1800 - ( 𝛳1 + 𝛳2 + 𝛳 3 + 𝛳4)  +𝛳5(Nagoor Kani - Control System 

Engineering-RBA (2013).Pdf, n.d.) 

 

5.64 

      𝑡𝑎𝑛 (𝛳1) = 
𝑦2−𝑦1

𝑥2−𝑥1
   =

0−7.3

0−−3.74
 = -1.95 
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𝛳1 =1800- 𝑡𝑎𝑛-1(-1.95)   = -62.870 =117.130 

      𝑡𝑎𝑛 (𝛳2) = 
𝑦2−𝑦1

𝑥2−𝑥1
   =

0−7.3

−6.25−−3.74
 = 2.9083 

𝛳2 =1800- 𝑡𝑎𝑛-1(2.9083) = 70.9920 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑝𝑜𝑙𝑒 (−1.91 + 1.92𝑖)𝛳 3 = 1800- 𝑡𝑎𝑛-1 7.3−1.92

3.74−1.91
 =108.7910 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑝𝑜𝑙𝑒 (−1.91 − 1.92𝑖)𝛳 4 = 1800- 𝑡𝑎𝑛-1 7.3+1.92

3.74−1.91
 =101.2270 

Summation of angles made by complex dominant pole to other poles 

X = 1800 - ( 𝛳1 + 𝛳2 + 𝛳 3 + 𝛳4)  

 

5.65 

 

A= 1800 – (117.130 +710+108.7910+101.2270)  

Summation of angles made by complex dominant pole to other zeros 

Y= 𝛳5 

 

5.66 

𝛳5 = 1800- 𝑡𝑎𝑛-1(-3.8624) = 104.5160 

A = X+Y 

 

5.67 

  A= -113.6270 

Now the angle measured by PD Compensated zero 𝑍𝐶  as reflected in the figure 

5.4.26 mentioned below is calculated using a trigonometric relationship 

𝑡𝑎𝑛(1800- 113.6270) = 
7.3

3.74−𝑍𝐶
   

 

5.68 

 

2.285=  
7.3

3.74−𝑍𝐶
   

𝑍𝐶 = 0.5453 
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STEP4: Gain Estimation 

Thus, the value of compensated zero is given by 𝑍𝐶  as 0.5453. It is possible to write 

the transfer function of compensated zero as K(S+0.5453) where K is the system’s 

loop gain. 

The transfer function of the PD Controller 𝐺𝑃𝐷=  
U(s)

E(s)
 = 𝐾𝑃 +𝐾𝐷𝑠 = 𝐾𝑃(1 +

𝐾𝐷

𝐾𝑃
𝑠) 

where 
𝐾𝐷

𝐾𝑃
  denotes 𝑇𝐷. 

𝐺𝑃𝐷=  
U(s)

E(s)
 = 𝐾𝑃 +𝐾𝐷𝑠 = 𝐾𝑃(1 +

𝐾𝐷

𝐾𝑃
𝑠) = 0.5453(1+1.8s) 5.69 

 

 

Fig 5.37 Pitch Attitude Control System 
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Fig 5.38 Pitch angle Verses Step Input 
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Fig 5.39 Step Response of the Pitch Angle 

 

Fig 5.40 Root-Locus Plot compensated Controller 
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Fig 5.41 Bode Plot of compensated Controller 
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Fig 5.42(1-3): Compensator Diagram 
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The Time-domain characteristics with and without controller is displayed below in 

Tabulated and pictorial representation                                 

S. No Time Domain Characteristics Without Controller With Controller 

1. Settling Time<10sec 5.51 7.12 

2. Peak Overshoot<20% 31.1 0 

3. Steady State Error<1% 1 1 

4. Rise Time<2sec 0.493 0.259 

 

S. No Frequency Domain Characteristics Without Controller With Controller 

1. Gain Margin>6Db 7.31 ∞ 

2. Phase Margin>45o 34.3 59.2 

 

Table 5.13 Hansa-III Pitch Attitude Characteristics 

 

Fig 5.43 Bar Pictorial Representation with and without Controller in Time-

Domain 

5
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Fig 5.44 Bar Pictorial Representation with and without Controller in Frequency-

Domain 

All time-domain characteristics satisfying design requirements as displayed in 

Table 5.13. The stability criterion is determined by estimating Gain Margin and 

phase margin from Bode Plot. The system will be stable if the Gain Margin and 

Phase Margin are both bigger than zero.; If the gain margin is infinite and the phase 

never crosses -180o then too system attains stability. Table 5.13 and Figure 5.44 

demonstrates that gain margin of the system with controller is infinite shows stable 

characteristics of Pitch attitude of RCT Aircraft. 

 

5.6 MODERN CONTROL METHODS 

Recent advancements in technology evolved novel approaches to design control 

systems termed modern control theory. Classical methods are limited to SISO 

systems while modern control theory has the scope of MIMO, time-variant, linear 

or non-linear systems. High-order systems are replaced by first-order differential 

equations to reduce system complexity. Optimization techniques are easily 

applicable to solve optimal control problems using this approach. A recent study 

on modern control theory had a significant impact on the aerospace sector(Nelson, 

7
.3

1

3
4

.3

5
9

.2

W I T H O U T  C O N T R O L L E R W I T H  C O N T R O L L E R

FREQUENCY DOMAIN 
CHARACTERISTICS

1 Gain Margin>6Db 2 Phase Margin>45o
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1989). Approaches such as guaranteed dominant pole placement, and LQR to 

design PID Controller of UAV(Debaleena et al., 2016). LQR and LQG Controller 

to study longitudinal and lateral flight dynamics is discussed and implemented for 

optimal estimation(Chrif & Kadda, 2014). Fuzzy PID Controller, Sliding mode 

controller, PID Controller to study pitch dynamics(Khalid et al., 2019)(Kisabo, 

2012) as well as LQR and fuzzy logic to design aircraft roll, and yaw controllers 

are also discussed(Usta et al., 2011)(George, 2012). The Pitch attitude control 

system of F-4 fighter jet aircraft is designed using PID, fuzzy logic PID(BOSSERT 

DAVID E & KELLY, 2002). The two methodologies such as pole placement and 

LQR are proposed to estimate the gain matrix for designing the PID Controller of 

Hansa-III. The state feedback control system's block diagram is displayed in Figure 

5.45 

 

                            𝑋𝑟𝑒𝑓(𝑡)     +          δ(t)                                                       y(t)  Output Pitch angle 

                           ref. I/P         -                       

                                                                        Aircraft Dynamics 

                                                                                                                x(t) 

Fig 5.45 Feedback Control Design 

 

5.6.1 POLE PLACEMENT TECHNIQUE 

The Pole placement technique calculates the gain matrix to guarantee system 

stability. The Controller has to modify the A matrix to change system dynamics. 

The eigenvalue of A matrix indicates the system’s poles whereas the location of 

poles dictates system stability thus desired pole location is an important feature of 

this technique satisfying all design requirements. The closed-loop dominant poles 

have faster system response as compared to other poles.  

Generalized State equation in Matrix form may be written:  

𝑥̇ = Ax(t) + Bu(t) 

  y = C x(t) +Du(t) 

 

  Gain K 
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𝑥̇ = A x + B u 

 

5.70 

y = C x +D u                                                                                                                                                         5.71 

 To define A(plant matrix), B(control matrix), C(output matrix), and D(null matrix) 

as they are reflected in the above equation are compared with state space matrix 

form 5.27 as  A, B, C,& D. 

 

[
𝛼̇
𝑞̇

𝜃̇

] =  [
−1.851 0.8207 0
−4.403 −2.01 0

0 1 0
] [

𝛼
𝑞
𝜃
]+ [

−0.00562
−8.95

0
]  [δ]                                 

 

5.72 

[𝜃] = [0 0 1] [
𝛼
𝑞
𝜃
] + [0][δ]                                                

5.73 

 

The open loop poles of matrix A are 0, -1.9305 ± 1.8993i 

                                                    

     Reference(I)                                    u                                           y 

                      Scaling Term      ± 

                                                                                            Plant Dynamics 

                                                                                       x 

 Gain Matrix 

Fig 5.46 Pole Placement  

The steps followed in the pole-placement technique are discussed as: 

1. Check system state controllability  

2. Choose closed-loop poles using the Butterworth methodology 

3. Determine the Feedback gain matrix using Ackermann’s theorem 

𝑥̇ = A x(t) + Bu(t) 

  Y = C x(t) +Du(t) 

 

𝐾𝑟 

   K 

𝑢 = 𝐼. 𝑘𝑟 − 𝑘 ∗ 𝑥 
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STEP-I 

If the states of the dynamic system affect the control input, controllability 

difficulties may arise. If the system state is unaffected then the system is 

uncontrollable. The sufficient condition for the system controllability test is the 

rank of the system is the same as the controllability matrix which is measured by 

V= [B AB A^2*B] for third order system and in MATLAB scripted as V= ctrb (A, 

B) 

V =[
0.0056 7.3349 −28.3611
8.9500 −18.0142 3.9132

0 8.95 −18.0142
] 

The rank of R1= rank(V) =3  

The system states controllable as the rank of V is of the same order as the system. 

 

STEP-II 

Closed-loop poles must lie at the desired location. All poles including dominant 

poles must lie at a specific location. It is required to avoid choosing closed-loop 

poles far away from open-loop poles. The value of closed-loop poles must not be 

highly negative as the system response will be too fast. The approach used in 

closed-loop pole selection employing the Butterworth polynomial equation for pole 

placement is dictated in equation 5.74 (Radhakant Padhi, n.d.)  

Butterworth Polynomial equation can be rewritten as: 

(
𝑆

𝑊𝑂
)= (−1)

𝑛+1

2𝑛 [
𝑒𝑗(2𝑘+1)𝜋

−1
]

𝑛+1

2𝑛
 

5.74 

where k = 0, 1, 2---- so on 

 𝑤𝑂= natural frequency 

 n= system order which states number of closed-loop poles 

As per trigonometric identity: 
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𝑒𝑗(2𝑘+1)𝜋 = 𝐶𝑜𝑠(2𝑘 + 1)𝜋 + 𝑗𝑆𝑖𝑛(2𝑘 + 1)𝜋)𝑛

= 𝐶𝑜𝑠𝑛(2𝑘 + 1)𝜋 + 𝑗𝑆𝑖𝑛(2𝑘 + 1)𝜋 

5.75 

As matrix A is of order three thus substituting n=3 in the above equation 

𝑛+1

2𝑛
=

2

3
    s= 𝑤𝑂[cos ( 2𝑘 + 1)2𝜋/3  + 𝑗 sin (2𝑘 + 1)2𝜋/3] 

Case I: 

K=0; 𝑤𝑂 = 2.7 

S1= 𝑤𝑂[𝑐𝑜𝑠2𝜋/3  + 𝑗 sin 2𝜋/3] = ( -1/2+j√3/2 )*2.7=-1.35+2.338j 

Case II: 

K=1; 𝑤𝑂 = 2.7 

S2= 𝑤𝑂[𝑐𝑜𝑠2𝜋  + 𝑗 sin 2𝜋] = -2.7 

Case III: 

K=2; 𝑤𝑂 = 2.7 

S3= 𝑤𝑂[𝑐𝑜𝑠10𝜋/3  + 𝑗 sin 10𝜋/3] = ( -1/2-j√3/2)* 2.7 = -1.35-2.338j 

Case IV: 

K=3; 𝑤𝑂 = 2.7 

S4= 𝑤𝑂[𝑐𝑜𝑠14𝜋/3  + 𝑗 sin 14𝜋/3] = ( -1/2+j√3/2)* 2.7 = -1.35+2.338j 

Case V: 

K=4; 𝑤𝑂 = 2.7 

S5= 𝑤𝑂[𝑐𝑜𝑠6𝜋  + 𝑗 sin 6𝜋] =- 2.7 

Case VI: 

K=5; 𝑤𝑂 = 2.7 

S6= 𝑤𝑂[𝑐𝑜𝑠22𝜋/3  + 𝑗 sin 22𝜋/3] = (-1/2-j√3/2) * 2.7 = -1.35− 2.338j 

Desired closed-loop pole roots S1, S2, S3 are -1.35± 2.338j, -1.3 
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STEP III 

The feedback gain matrix ‘K’ using the pole-placement technique is estimated 

using Ackermann’s method. The algorithm to estimate the gain matrix is presented 

in Appendix B5. This method solves the pole placement problem while designing 

the control system for time-invariant systems represented by the equation 

as(Nelson, 1998)(Radhakant PadhiDepartment of Aerospace Engineering, n.d.) 

𝑢(𝑡) = −𝑘𝑥(𝑡) 5.76 

The modified system equation is expressed as 𝑥̇ = (𝐴 − 𝐵𝑘)𝑥 ; let us define 𝐴∗ =

𝐴 − 𝐵𝑘 since the Cayley-Hamilton theorem states that 𝐴∗satisfies own 

characteristic equation thus  

 ϕ (𝐴∗) = 𝐴∗𝑛 + 𝛼1𝐴
∗𝑛−1 + − − − − −𝛼𝑛−1𝐴

∗ + 𝛼𝑛 (Radhakant 

PadhiDepartment of Aerospace Engineering, n.d.) 

5.77 

Consider trigonometric Identities as I=I; 𝐴∗ = 𝐴 − 𝐵𝑘; 𝐴∗2 = (𝐴 − 𝐵𝑘)2; 𝐴∗3 =

(𝐴 − 𝐵𝑘)3  

The system is states controllable as explained in step I thus pre-multiplying both 

sides of the equation by the inverse of the controllability matrix (Radhakant 

PadhiDepartment of Aerospace Engineering, n.d.) 

𝐶−1ϕ (𝐴∗) = [
𝛼2𝑘 + 𝛼1𝑘𝐴∗ + 𝑘𝐴∗2

𝛼1𝑘 + 𝑘𝐴∗

𝑘

]  
5.78 

Now pre-multiplying both sides of the equation by [0 0 1] matrix to obtain 

Ackermann’s equation 

[0 0 1] [
𝛼2𝑘 + 𝛼1𝑘𝐴∗ + 𝑘𝐴∗2

𝛼1𝑘 + 𝑘𝐴∗

𝑘

] = [ 0 0 − − − − − −1]𝐶−1ϕ (𝐴∗) =

𝑘 

 

5.79 

𝑘 = [ 0 0 − − − − − −1]𝐶−1ϕ (𝐴∗) 

 

5.80 
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Where k is the feedback vector, ϕ (𝐴∗) is desired characteristic equation of matrix 

A, and C is the controllability matrix 

ϕ (𝐴∗)  = det (𝑆𝐼 − (𝐴 − 𝐵𝐾) 5.81 

The closed loop poles of matrix ϕ (𝐴∗)  are:  

  -1.3000 + 0.0000i 

  -1.3500 + 2.3380i 

  -1.3500 - 2.3380i 

The gain K as shown in the figure 5.47 is also determined using MATLAB function 

as ‘acker’ thus Gain K = acker (A, B, S); K = [-0.2612    0.0157    0.5728] 

 

Fig 5.47 Step Response using pole placement without scaling effect 

The scaling effect 𝑁̅ = 0.5728 compensates steady-state error to 0.01 of the system 

as shown in the above figure 5.47 
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Fig 5.48 Closed-Loop Step Response using pole placement with scaling effect 

 

The Time-domain characteristics with and without scaling effect is displayed below 

in Table 5.14  
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S.No Closed loop Time-

domain response 

 Design 

Specification 

 Pole-placement 

with Scaling 

effect   

Pole-placement 

without Scaling 

effect   

1. Steady-state error <1% 1 0.349 

2. Peak overshoot <20% 4.59 4.59 

3. Settling Time (sec) <10sec 3.08 s 3.08 s 

4. Rise Time (sec) <5sec 0.793 s 0.793 s 

Table 5.14 Time domain Performance characteristics using Pole-Placement 

Technique 

The pitch angle response utilizing the pole assignment technique shown in Figure 

5.47,5.48 depicts zero steady state error while compensating for steady state error 

from 0.349 to 0.01 with a scale factor N = 0.5728. 

 

5.6.2 LINEAR QUADRATIC REGULATOR 

The system performance in the time and frequency domain is measured in the form 

of settling time, rise time, peak time, Gain Margin, Phase Margin, and Bandwidth. 

Traditional methods cannot handle the problem of designing an aircraft attitude 

control system that requires pleasing design criteria. An advanced approach known 

as optimal control made it feasible to solve complex system problems. LQR is an 

optimal modern control approach that solves optimization problems by keeping the 

cost function minimal with subjected to a given set of constraints(Haddar et al., 

2021). This method is comparable to pole placement since gain K is implemented 

similarly, as seen in Fig. 5.45, but gain K's value is selected using a different 

process. By selecting closed-loop characteristics with the help of the cost function, 

optimal gain K is computed. (Wahid & Rahmat, 2010)(Ashraf et al., 

2018)(JAISWAL & PRAKASH, 2022). 
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PROCEDURE TO SOLVE LQR PROBLEM 

 

Fig 5.49 Flowchart of Linear Quadratic Regulator 

The objective of this theory helps in satisfying all physical constraints and 

minimizes performance Index ‘J’ 

 

                                                                             J(z)                                            
Cost Function            

‘J’ 

Z 
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J(z) = Cost function that measures how much solution z costs. The set to solve 

optimization problem includes feasible sets z= {z1, z2, z3--------z5)    

J3(z) = Q J1(z)+R J2(z)  

The minimal value of the cost function gives an optimal solution. The performance 

Index can be rewritten as(Nelson, 1998): 

J =∫ {𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢
∞

0
} dt    5.82 

 Q, and R are known as scaler weights as well as the weighted squares of deviation 

of state from target and weighted square of control activity, x as a state vector, u as  

input vector. The Q term measures performance characteristic such as settling time 

(ST), rise time (RT), and peak time (PT) and the R term penalize actuator effort. 

The integrand function depicts the area under the curve. Q measures the 

convergence rate (Settling and Rise time), and R penalizes aggressive Input. The Q 

and R allow a trade-off between the rate of convergence and input activity.  

Rise and Settling time implicit in 𝑥𝑇𝑄𝑥 term. Damping ratio, overshoot, 

oscillations implicit on square functions. The positive and negative error is 

penalized using square functions. The peak value of the function is penalized using 

a square. 

To penalize the negative values of the linear function, the states are squared and 

hence termed as a Linear quadratic function.  These functions have a definite 

minimum value. The square is used because it leads to an easier analysis of the 

system.  

Optimizing performance Index concerning parameters of state feedback and subject 

to given dynamics 

min J =∫ {𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢
∞

0
} dt               𝑥̇ = Ax + Bu; u =-k x                        𝑥̇ 

= (A-Bk) x 
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whereas, x(t) = n× 1 state vector, Q = n×n symmetric positive semi-definite matrix, 

u(t) = m× 1 control vector, R = m×m symmetric positive semi-definite matrix as a 

result, J will be positive.  

STEPS FOR K DETERMINATION 

STEP 1: Formulate a linear state-space model to get Matrices A and B from plant 

dynamics 

Generalized State equation in Matrix form is written as:  

𝑥̇ = Ax + Bu 5.83 

To define A(plant matrix), and B(control matrix), as they are reflected in the 

above equation are compared with state space matrix form 

[
𝛼̇
𝑞̇

𝜃̇

] =  [
−1.851 0.8207 0
−4.403 −2.01 0

0 1 0
] [

𝛼
𝑞
𝜃
]+ [

−0.00562
−8.95

0
]  [δ]                                 

5.84 

 

STEP 2: Choose weighing matrices Q, and R to get a minimal value of 

performance Index for an optimal solution. Start with Q = [
1 0 0
0 1 0
0 0 1

] , R= 

[
1 0 0
0 1 0
0 0 1

]  and iterate as per design requirements. 

For SISO systems, R can be left at unity and Q33 weighs the most important state 

from the response of the system and leaves other weights at unity(Sushamshushekar 

Doddabasappa, 2019). Initializing x= 400, Q = x*CT*C 

C= [0 0 1] Q = [0 0 0;0 0 0;0 0 x]   R= [1] 

STEP 3: Solve non-linear Algebraic Riccati Equation for determining matrix S 

which indicates the solution by using MATLAB function ‘CARE’ 

STEP 4: The optimal control law solves the algebraic Riccati equation for S as ATS 

+SA-SBR-1BTS +Q=0. The control law is stated as u = - k x where k = R-1BTS thus 
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determining gain by swapping all values for A, B, Q, R, and S. The Gain K is also 

obtained using lqr MATLAB function as [K] = lqr (A, B, Q, R) 

 

K= full state-feedback gain 

S= Ricati Matrix 

E= eig (A-BK)                                 

                                                          u (t)                                         x 

                       

 

                                

STEP 5: Choose the K solution that yields a stable system. The estimated value of 

optimal gain K = [-0.4717 1.88 20.00] using algorithm discussed in Appendix B6 

STEP 6: The closed-loop step response provides information on performance 

characteristics like settling time, peak time, SSE 

lqr 
A, B, Q, R 

K, S, E 

𝐾 𝑥̇ = A x(t) + Bu(t) 

   

 
Control Law Linear Plant 
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To reduce steady-state error, a scale factor should be added to compensate for the 

error but for this controller design, the gain value is found to be unity which 

concludes that K itself stabilizes the system and steady-state error approaches 0.01 

as per design requirement. Figure 5.50 displays the closed-loop step and pitch angle 

response using LQR controller. 

 

Fig 5.50 Closed Loop Step Response using LQR Controller  
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The Time-domain characteristics without scaling effect is displayed below in Table 

5.15 

S. No Closed loop Time-domain 

response 

 Design 

Specification 

 LQR without 

Scaling effect   

1. Steady state error <1% 1 

2. Peak overshoot <20% 4.37 

3. Settling Time <10sec 0.444 s 

4. Rise Time <5sec 0.16 s 

 

Table 5.15 Time domain characteristics using LQR  

The pitch angle response utilizing LQR is shown in Fig.5.50, where the gain value 

is determined to be unity, concluding that K stabilizes the system by itself and that 

steady-state error approaches the design requirement of 0.01 

 Remark: 

1. The optimal state feedback system is guaranteed to be stable if the system 

is fully controllable. 

2. More the value of R, the lesser the the input activity but slow state 

behavior leads to poor performance thus system has poor controllability. 

3.  In a Controllable system, every coefficient of a closed-loop pole 

polynomial can be defined as desired closed-loop poles using state 

feedback 

4. Optimal state feedback shows better performance than pole placement by 

enabling more systematic tuning/ trade-off between tracking and control 

activity. 
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5.7 VALIDATION 

 

Controller Design is an Intermediate stage of the research study moreover, 

validation is a proof-match exercise that needs to be executed for result 

authentication. Results are validated in terms of time and frequency domain 

characteristics of classical and modern control methodologies for optimization of 

PID parameters of Hansa-III for pitch control 

The outcomes of different varieties of the PID tuning method are analysed in the 

form of gain K p, Ki, K d. The gain K p improves the accuracy of steady-state 

tracking, decreases system sensitivity, and creates a constant steady-state error. The 

gain K d has a poor steady-state response but leads to system stability moreover Ki 

has a good steady-state response but leads to system instability. The Transfer 

function of the Pitch controller has two zeros in the numerator, one pole at the 

origin, and a denominator that makes the system highly stable. 

The PID tuning techniques are applied and results are compared in the Tabulated 

and graphical figure presented below which concludes that modified ZN proclaims 

the finest result as Astrum -Hagglund did not have a derivative component that 

leads to system instability and the response is undamped oscillatory motion. The 

gain values using a technique such as ZN and MZN are compared and have a feature 

of stability and approach steady-state error frequently but MZN satisfies controller 

design requirements. The tuning approach TL manifests a larger value of K d that 

increases aircraft stability despite that steady-state error is difficult to attain and 

thus unable to accomplish design requirements.  
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Method 

  

General Aviation 

Airplane(Deepa & 

Sudha, 2016) 

 Hansa-III Aircraft  

  
Modified ZN   

KP 0.6171 0.4422 

KI 0.61 0.752 

KD 0.406 0.4963 

Ziegler Nicholas     

KP 1.122 0.804 

KI 1.833 1.0691 

KD 0.1711 0.1512 

Tyreus- Luyben     

KP 0.8415 0.4188 

KI 2.684 0.2376 

KD 0.193 3.3088 

Astrum- Hagglund     

KP 0.5984 0.4422 

KI 0.94 1.4138 

KD 0 0 

Table 5.16 Result Validation of PID Tuning Techniques with general aviation 

airplane(Deepa & Sudha, 2016) 

The results of different PID tuning Techniques in form of gain K p, Ki, K d is 

validated with general aviation airplane (Deepa & Sudha, 2016) 

 

Fig 5.51 Result of Hansa-III with general aviation Airplane using MZN (Deepa & 

Sudha, 2016) 

0.6171 0.61

0.406
0.4422

0.752

0.4963

KP KI KD

Modified Ziegler Nicholas

General Aviation Airplane Hansa-III  Estimated Values
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Fig 5.52 Result of Hansa-III with general aviation Airplane using ZN (Deepa & 

Sudha, 2016) 

 

 

Fig 5.53 Result of Hansa-III with general aviation Airplane using TL (Deepa & 

Sudha, 2016) 

1.122

1.833

0.1711

0.804

1.0691

0.1512

KP KI KD

Ziegler Nicholas

General Aviation Airplane  Estimated Values( Hansa-III)

0.8415

2.684

0.1930.4188 0.2376

3.3088

KP KI KD

Tyreus-Luyben

General Aviation Airplane  Estimated Values( Hansa-III)
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Fig 5.54 Result of Hansa-III with general aviation Airplane using AH (Deepa & 

Sudha, 2016) 

 

a) The second traditional approach to estimating gain values of K p, Ki, and K 

d is designing a compensator using a Root-locus Algorithm. The transfer 

function of compensated zero can be written as K(S+0.5453) where K is the 

loop gain of the system which is briefly discussed in root-locus section. The 

compensated controller’s transfer function is provided as 

 

            𝐺𝑃𝐷=  
U(s)

E(s)
 = 𝐾𝑃 +𝐾𝐷𝑠 = 𝐾𝑃(1 +

𝐾𝐷

𝐾𝑃
𝑠) = 0.5453(1+1.8s) 

0.5984

0.94

0

0.4422

1.4138

0

KP KI KD

Astrum-Hagglund

General Aviation Airplane  Estimated Values( Hansa-III)



145 
 

 

  Fig 5.55 Simulink block diagram of Attitude Controller of Hansa-III 

The Simulink block diagram of the Attitude Controller of Hansa-III is represented 

pictorially in Figure 5.55 

The result in form of design specifications with and without the controller of 

Hansa-III is displayed in Table 5.17 

S. 

No 

Time Domain Characteristics Without Controller With Controller 

1. Settling Time<10sec 5.51 s  7.12 s 

2. Peak Overshoot<20% 31.1 0 

3. Steady State Error<1% 1 1 

4. Rise Time<2sec 0.493 s 0.259 s 

Table 5.17 Time Domain Characteristics with & without Controller of Hansa-III 

b) Modern control Techniques like pole placement and the linear quadratic 

regulator are used to estimate the gain matrix, and results are obtained in 

the form of Time-domain characteristics as displayed in Table 5.18 It is 

noted that the settling time is too fast for the LQR controller as compared 

to pole placement and LQR has an outstanding feature of approaching zero 

steady-state error.  
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S. No Closed loop Time-

domain response 

 Design 

Specification 

 Pole-placement 

without Scaling 

effect 

LQR  

without Scaling 

effect   

1. Steady-state error <1% 0.349 0.01 

2. Peak overshoot <5% 4.59 0.332 

3. Settling Time <5sec 3.08 s 0.44 s 

4. Rise Time <2sec 0.793 s 0.16 s 

Table5.18 Comparison of Time domain characteristics  

The LQR Controller is chosen among traditional and modern approaches and the 

results obtained in the form of performance characteristics is validated with general 

aviation aeroplane (Wahid & Hassan, 2012) 

 S. No 

 Performance 

Characteristics Hansa-III 

General Aviation 

Airplane (Wahid & 

Hassan, 2012) 

1.  Steady-state error 0.01 0.01 

2.  Peak overshoot 0.332 4.35 

3.  Settling Time 0.44 s 0.3655 s 

4.  Rise Time 0.16 s 0.1335 s 

Table5.19 LQR Result Validation of Time domain characteristics with General 

Aviation Airplane(Wahid & Hassan, 2012) 

The performance characteristics of Hansa-III compared with General Aviation 

Airplane as shown below  
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Fig 5.56 LQR Result of Hansa-III with general aviation Airplane (Wahid & 

Hassan, 2012) 

 

SUMMARY 

In this chapter, the basics of an automatic control systems, aircraft stability and 

Control systems, Aircraft axes systems, and reference frames for the formulation 

of longitudinal force and moment equations in wind axes were addressed. This 

chapter focuses on longitudinal stability, and longitudinal modes (short-period, 

Long-period) for assessing flying handling qualities in terms of damping ratio and 

frequency. The Longitudinal equations were used to formulate a state–space matrix 

representation to deduce the transfer function for solving pitch control problems. 

The gain parameters using different approaches such as closed-loop PID Tuning 

techniques: ZN, MZN, AH, and TL were used for gain estimation. PID Tuning 

approaches were also applied to different datasets Multistep, Doublet, and Pulse 

(refer Appendix D1, D2) for comparison of approaches.  
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 Classical approaches such as Root-locus, and modern control approaches such as 

Pole-Placement, and LQR are discussed and results are compared for gain 

optimization. It is observed that the LQR Controller shows the best optimal result 

amidst classical and modern approaches. The FSFC (full state feedback controller) 

is designed and optimal control law for pitch control is developed.  
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CHAPTER -6 

AIRCRAFT NAVIGATION SYSTEM 

  

Research and Development in the field of Aircraft Navigation is always 

fascinating as it applies to finding the exact position, orientation, and velocity of 

aircraft. This study investigates the problem statements related to parameter 

estimation for aircraft positioning systems based on inertial sensor measurements 

provided by Hansa-III aircraft. Attitude and position can be resolute by an 

accelerometer and gyroscope. M. Jayachandran presented an approach to DR to 

measure aircraft position. When the GPS is not working, this procedure is useful 

for navigating. The Navigational algorithm is implemented within the display 

system of aircraft that receives information about attitude, and 

position(Jayachandran et al., 2009). Dead Reckoning is applied in numerous 

navigation applications such as aircraft navigation, automotive navigation, 

surveillance, mobile robots, and marine navigation. Zeev Berman discussed 

future aspects of aviation navigation systems as the Dead reckoning system. He 

presented an actual statistical model and varied wind vectors to match actual data. 

To measure the horizontal positioning error, he compared the dead reckoning 

system, standalone inertial sensors, and inertial sensors integrated with the DR 

system. (Berman, 1998). Parinaz estimated navigational parameters such as 

position using PDR (Pedestral Dead Reckoning) of mobile robots. The PDR 

algorithm was designed to get more accurate gait parameters which will improve 

the accuracy of position estimates(Kasebzadeh, 2017). Philips integrated GPS 

and DR sensors to track and navigate low-cost vehicles. Results for GPS, tightly 

coupled DR, and loosely coupled DR are compared and explained. Tightly 

coupled DR gives the best optimum result as compared with all three.(G.Mattos, 



150 
 

1994) 

Pure Dead Reckoning Technology is economical, cheaper and generate 

systematic inaccuracies, making it impractical to employ where a precise 

position-based radio-signal navigation system is needed. The study investigates 

the performances of tightly coupled INS/GPS, loose couple INS/ GPS, and INS 

using SIMULINK. Tightly coupled INS/GPS gives better performance than 

loosely coupled integration as proposed by T. Mahmoud(Mahmoud & 

Trilaksono, 2018). The DR approach is mitigated in a quad-rotor navigation 

system for better reliability and accuracy. It enables the quadrotor to estimate the 

distance from peak to peak. The simulated result shows the accuracy of the 

navigation solution while comparing INS and QDR approaches. QDR navigation 

solution is bounded while the INS solution diverges as proposed by A. Shurin 

(Shurin & Klein, 2020). Integration of the INS-GPS-GLONASS system to 

enhance systems accuracy is applied for combat aircraft, ships, and long-range 

missiles is discussed by G.S. Reddy (Reddy & Saraswat, 2013). Dead Reckoning 

approach is used in UAV as proposed by Lorenzo Fusini using XKF and NLO. 

IMU sensors such as (acceleration, rate gyros, inclinometer); altimeters; and 

cameras are used. Position, velocity, and altitude are used as observed states. 

XKF gives the best optimum result as compared with NLO(Fusini et al., 2017) 

The selection of an accurate navigational coordinate estimation method is a big 

challenging issue for real-time navigation. Some methods like the GNSS Global 

Navigation satellite system are based on signal transmission through satellite but 

the challenge faced by these systems is loss of signal connectivity which is 

handled by using Dead reckoning(Kasebzadeh, 2017).  Hansa-III, flight test is 

regulated and real flight data is gathered using a data acquisition system. 

Integration of the dead reckoning approach in Hansa-III aircraft is used for the 

estimation of latitude, longitude, and altitude (φ, θ, h) for future navigation 

prediction. Comparative assessment between dead reckoning and exponential 

smoothing is presented in tabulated and graphical form. 
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6.1 DEAD RECKONING 

 

The Dead Reckoning methodology proposed for this study predicts the current 

location and velocity measurements by using previously determined locations 

over time elapsed on estimated speed. Pure Dead Reckoning is economical, and 

cheaper 8 Inertial measurement sensors including accelerometers, magnetometers, 

and gyroscopes are used for navigation through Dead Reckoning(Reddy & 

Saraswat, 2013). An accelerometer measures acceleration acting on the moving 

object to detect position whereas the magnetometer provides information about 

the direction and estimates magnetic induction. The gyroscope sensor measures 

the orientation and assesses the angular velocity (p, q, r) of an aircraft and provides 

position information, and orientation. 

 As per Figure 6.1, the absolute heading is measured by using sensors (gyroscope, 

digital compass). An odometer is used to measure the distance Si. 

The set of equations provides the DR solution  

𝑥𝑖 = 𝑥0 + ∑ 𝑆𝑖𝐶𝑜𝑠𝛳𝑖
𝑘−1
𝑖=0                                                                                                           6.1 

 

𝑦𝑖  = 𝑦0 + ∑ 𝑆𝑖𝑆𝑖𝑛𝛳𝑖
𝑘−1
𝑖=0                                                                                                             6.2 

 

Fig 6.1 Dead Reckoning (Pedro Paulo Liborio Lima do Nascimento,Leandro 

Aparecido Villas,Bruno Yuji Lino Kimura, 2018) 
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The heading of the vehicle is the same as the INS heading as a heading is 

measured from the INS sensor thus 𝛳𝑣 =𝛳𝐼𝑁𝑆  

The NED coordinate system measures vehicle velocities in the North, East, and 

Down directions. VN= VC Cos θ, VE= VC Sin θ, VD=   -Altitude. The velocities are 

integrated to get the distance in the North, and East directions which state  SE= VE 

Δ t, SN = VN Δ t where Δ t is the sampling time. 

Dead Reckoning Algorithm 

The approach used to get an accurate navigational parameter using the DR 

algorithm is explained through a flowchart discussed in Fig 6.2 

Block 1 explains the NED North, East, and Down coordinate systems used to 

determine aircraft velocity in the NED direction. 

Block 2 estimates VN, VE, VD using expression as VN= VC Cos θ, VE= VC Sin θ, 

VD=   -Altitude 

Block 3 estimates SN, SE, using expression as SE= VE Δ t, SN= VN Δ t and X, Y, 

and Z coordinate is calculated as X(K)= X(K-1) + Se Cos θ, Y(K)= Y(K-1) + Sn 

Sin θ, Z= -h  

Block 4 depicts aircraft position in X, Y, and Z direction using expression as 

X(K)= X(K-1) ± ∆X, Y(K)= Y(K-1) ± ∆Y, Z(K)= Z(K-1) ± ∆Z 

Block 5 predicts the value of heading, and altitude based on existing values to 

predict measurements. 

Block 6 Aircraft position in X, Y, and Z direction from block 4 is converted to 

geodetic coordinates as latitude, longitude, and altitude for determination of 

geographical location. 
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Fig 6.2 Flow chart of Dead Reckoning 

 

ROAD MAP TO ESTIMATE GEODETIC CO-ORDINATES 

The road map for geodetic co-ordinate Estimation is shown in Fig 6.3 followed 

by steps I, II, and III 
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Fig 6.3 RoadMap for geodetic co-ordinate Estimation 

 

STEP1: Heading angle is calculated using formulae ATAN2 (𝑎𝑥, 𝑎𝑧) as shown 

in Figure 6.4 where the initial value of (𝑎𝑥, 𝑎𝑧) is fetched from flight data refer 

to (Appendix D3) for forecast prediction.  
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Fig 6.4 NED Coordinate System 

  

ϴ = arctan2(a E, a N) 

 

ϴ = arctan2(a X, a Z) 

(E, N) 

East 

North 

(X, Z) 

X 

Z 
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A forecast sheet is used in Excel to predict the future value of the heading based 

on existing value. The flight test of Hansa-III aircraft with a time interval of 10 

sec is gathered using a data acquisition system. X-axes resemble Time in (milli-

sec) and Y-axes state the value of acceleration in the X-direction. The blue line 

in the below figure indicates real flight data and bold red line as forecast value 

and the light red line as lower and upper bounds of the ax.              
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X-axes resemble Time in (milli-sec) and Y-axes state the value of acceleration 

in the Z direction, the blue line in the above figure indicates real flight data and 

bold red line as forecast value, and the light red line as lower and upper bounds 

of az.  

 

Fig 6.5 Forecast of Acceleration X, Z, and Heading angle 

X-axes resemble Time in (milli-sec) and Y-axes state the value of the heading 

angle in radians where red lines in the curve depict the forecasted heading angle 

in Fig 6.5. The upper, and lower bounds explain the maximum, and minimum 

range of the heading angle. 

STEP2: Dead Reckoning algorithm used to determine XYZ co-ordinates 

VN= VC Cos θ, SN = VN * Δ t 

VE= VC Sin θ, SE = VE * Δ t 

VD=   -Altitude 

X(K)= X(K-1) + Se Cos θ 

Y(K)= Y(K-1) + Sn Sin θ 

Z= -h  

X(K)= X(K-1) ± ∆X 

Y(K)= Y(K-1) ± ∆Y 

Z(K)= Z(K-1) ± ∆Z 
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STEP3: Conversion of   X, Y, and Z Co-ordinate to geodetic Co-ordinate 

(Latitude, longitude, and Altitude) using MATLAB code is displayed in Table 

6.1 (refer Appendix B7) 

The file xyaS2 contains XYZ Cartesian co-ordinates of 10 sec as mentioned in 

the code  

X=xyaS2(:1); 

Y=xyaS2(:2); 
Z=xyaS2(:3); 

X=X {:1}; 

Y=Y {:1}; 

Z=Z {:1}; 

Origin = [80.232293, 26.518886,126.63]; 

[Lat, Lon] =local2latlon (X, Y, Z, origin); 

zoom level=12; 

player = geoplayer (Lat (1), Lon (1), zoom Level); 

plot Route (player, Lat, Lon); 

 

 

 

Fig 6.6 Geographical co-ordinates at Initial phase of Flight test, IIT Kanpur 

(80.232293,26.518886,126.63) 
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The tabulated form and graphical representation in form of XY coordinate and 

longitude, latitude is displayed below 

 

X(T) Y(T) LONGITUDE LATITUDE 

0.586526 0.318894 80.2323 26.5189 

1.174282 0.636558 80.2323 26.5189 

1.759109 0.957151 80.2323 26.5189 

2.340916 1.280764 80.2323 26.519 

 2.92379 1.60331 80.2323 26.519 

3.512289 1.920231 80.2323 26.519 

4.095947 2.241993 80.2323 26.519 

4.678165 2.565195 80.2323 26.519 

5.257532 2.891248 80.2323 26.519 

5.839366 3.214834 80.2323 26.5191 

Table 6.1 Conversion XY coordinate to Latitude and Longitude 

 

Fig 6.7 Forecasted Value of X, Y Aircraft Coordinates using DR 

 X-axes resemble X coordinates in (m) and Y axes state the value of Y 

coordinates in (m) in Fig 6.7. The blue line in the above figure indicates the XY 
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coordinate of the aircraft for the next 10 sec.   

 

Fig 6.8 Forecasted Value of Longitude, Latitude in degrees using DR 

Fig 6.8 axes resemble Longitude in (degrees) and Y axes state value of Latitude 

in (degrees). The blue line in the above figure indicates the aircraft position for 

the next 10 sec in form of (Longitude, Latitude) 

6.2 NEWTON DIFFERENCE 

This equation predicts the current location based on a previously determined 

equation in the discrete-time interval which is the concept of the dead reckoning 

approach. 

The Inertial Measurement Unit includes an accelerometer that measures 3-axis 

translational 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧. The gyroscope measures 3-axis rotational p, q, and r 

values, and the air data sensor measures airspeed. Refer to Appendix D3. The 

acceleration of the object is the time rate of change of the body's momentum, 

according to Newton's second law of motion. 
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𝑑𝑉𝑥

𝑑𝑡
 = 𝑎𝑥  , 

𝑉𝑥(t+Δt)-  𝑉𝑥(t)

∆t
 =  𝑎𝑥 , 𝑉𝑥(t+Δt) = 𝑉𝑥(t)+ 𝑎𝑥 ∆t 

X(K)= X(K-1)+𝑉𝑥(k) ∗ Δt    6.3 

𝑉𝑥(K)=𝑉𝑥 (K-1)+ 𝑎𝑥(k)*Δt 6.4 

z(K)= z(K-1)+𝑉𝑧(k)*Δt 6.5 

𝑉𝑧(K)=𝑉𝑧 (K-1)+ 𝑎𝑧 (k)*Δt 6.6 

 

Fig 6.9 Forecasted Value of X, Y Aircraft coordinates using Newton-Difference 

Method 

X-axes resemble X coordinates in (m) and Y-axes state the values of Y 

coordinates in (m). The blue line in figure 6.9 indicates XY coordinate of the 
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aircraft for the next 10 sec using newton-difference formulae 

Comparison of Dead Reckoning and Difference formulae in terms of X, Y 

Coordinates 

  

Fig 6.10 Comparison of Forecasted Value of X Position of aircraft using DR 

and Newton-Difference Method 

X-axes resemble 100 datasets and Y-axes state value of X coordinates in (m). The 

blue line and red line in figure 6.10 indicate the X position of the aircraft for the 

next 10 seconds using the DR and Newton Difference method. 
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Fig 6.11 Comparison of Forecasted Value of Y Position of aircraft using DR 

and Newton-Difference Method 

X-axes resemble 100 datasets and Y-axes state the values of Y coordinates in 

(m). The blue line and red line in above figure 6.11 indicate the Y position of the 

aircraft for the next 10 seconds using the DR and Newton Difference method 

Aircraft Position Estimation

 

Fig 6.12 Comparison of Forecasted Value of Longitude, and Latitude of aircraft 

using DR and Newton-Difference Method 
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X-axes resemble Longitude in (degrees) and Y-axes state the value of Latitude 

in (degrees). The black line and orange line in above figure 6.12 indicate (the  

longitude and latitude) of the aircraft for the next 10 seconds using the DR and 

Newton Difference method. 

 

LONGITUDE 

(N.D) 
LATITUDE 

(N.D) 
LONGITUDE 

(D.R) 
LATITUDE 

(D.R) 
%Error 

(LON) 
%Error 

(LAT) 

80.2323 26.519 80.2323 26.5189 0 -0.00038 

80.2323 26.5193 80.2324 26.5191 0.000125 -0.00075 

80.2324 26.5201 80.2325 26.5194 0.000125 -0.00264 

80.2325 26.5208 80.2326 26.5197 0.000125 -0.00415 

80.2326 26.5217 80.2327 26.52 0.000125 -0.00641 

80.2328 26.5224 80.2327 26.5203 -0.00012 -0.00792 

Table 6.2: Estimation of Percentage Error 

It is found that there is a slight variation in the values of latitude but the values 

of longitude are quite similar for both techniques. The percentage error is quite 

small for longitude and latitude as shown in Table 6.2 

6.3 VALIDATION  

Statistical Technique in Time Series for validating the result using the Dead 

Reckoning approach is discussed below: 

Exponential smoothing is used to study trend analysis of the non-linear irregular 

patterns of aircraft location. The Longitude of the next 5 sec is forecasted in the 

below section using exponential smoothing time series analysis. The exponential 

smoothing formulae 
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𝐹𝑡 = 𝛼.𝑀𝑡−1 + (1 − 𝛼)𝐹𝑡−1 6.7 

𝛼 is the smoothing constant which lies in the range 0 ≤ 𝛼 ≤ 1; 𝐹𝑡 is the forecasted 

value for time t; 𝐹𝑡−1 is the previous forecasted value for time (t-1); 𝑀𝑡−1 is the 

previously measured value of the physical quantity that needs to be forecasted at 

the time (t-1). It is also expressed in term of Damping factor as ζ = 1- 𝛼 ; ζ = 0.7 

as calculated by (JAISWAL & PRAKASH, 2022) 

 

Fig 6.13: Forecasted Value of Longitude using Exponential Smoothing 

Technique  

The Longitude of Fig 6.13 of the next 10 sec is forecasted in the above section 

using exponential smoothing time series analysis for α=0.3 

80.2346
80.2347

80.2348
80.2349

80.235

80.2351

80.2352

80.2353

80.2354

80.2355

0
:0

0
:0

9
.9

8
0

0
:0

0
:1

0
.0

6
0

0
:0

0
:1

0
.1

4
0

0
:0

0
:1

0
.2

2
0

0
:0

0
:1

0
.3

0
0

0
:0

0
:1

0
.3

8
0

0
:0

0
:1

0
.4

6
0

0
:0

0
:1

0
.5

4
0

0
:0

0
:1

0
.6

2
0

0
:0

0
:1

0
.7

0
0

0
:0

0
:1

0
.7

8
0

0
:0

0
:1

0
.8

6
0

0
:0

0
:1

0
.9

4
0

0
:0

0
:1

1
.0

2
0

0
:0

0
:1

1
.1

0
0

0
:0

0
:1

1
.1

8
0

0
:0

0
:1

1
.2

6
0

0
:0

0
:1

1
.3

4
0

0
:0

0
:1

1
.4

2
0

0
:0

0
:1

1
.5

0
0

0
:0

0
:1

1
.5

8
0

0
:0

0
:1

1
.6

6
0

0
:0

0
:1

1
.7

4
0

0
:0

0
:1

1
.8

2
0

0
:0

0
:1

1
.9

0
0

LO
N

G
IT

U
D

E 
(D

EG
R

EE
S)

TIME ( MILLISEC)

Longitude Vs Time using E.S at α=0.3



166 
 

 

Fig 6.14 Forecasted Value of Latitude using Exponential Smoothing Technique  

The Latitude of Fig 6.14 of the next 10 sec is forecasted in the above section using 

exponential smoothing time series analysis for α=0.3 

 

Fig 6.15 Forecasted Value of Longitude, Latitude in degrees using Exponential 

Smoothing Technique  
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The Longitude and Latitude of the next 10 sec are forecasted in the below 

section using exponential smoothing time series analysis for α=0.3 and results 

are compared with Newton Difference and Dead Reckoning. 

Dead 

Reckoning   

Newton 

Difference   

Exponential 

Smoothing 

alpha 0.3   

LONGITUDE LATITUDE LONGITUDE LATITUDE LONGITUDE LATITUDE 

80.2323 26.5189 80.2323 26.5189 80.2323 26.519 

80.2323 26.5189 80.2323 26.519 80.2323 26.519 

80.2323 26.5189 80.2323 26.519 80.2323 26.519 

80.2323 26.519 80.2323 26.519 80.2323 26.519 

80.2323 26.519 80.2323 26.5191 80.2323 26.519 

80.2323 26.519 80.2323 26.5191 80.2323 26.519 

80.2323 26.519 80.2323 26.5192 80.2323 26.519 

80.2323 26.519 80.2323 26.5192 80.2323 26.519 

80.2323 26.519 80.2323 26.5192 80.2323 26.519 

80.2323 26.5191 80.2323 26.5193 80.2323 26.519 

80.2324 26.5191 80.2323 26.5193 80.2323 26.519 

80.2324 26.5191 80.2324 26.5194 80.2324 26.519 

80.2324 26.5191 80.2324 26.5194 80.2325 26.519 

80.2324 26.5191 80.2324 26.5194 80.2325 26.519 

80.2324 26.5191 80.2324 26.5195 80.2325 26.519 

80.2324 26.5192 80.2324 26.5195 80.2325 26.519 

80.2324 26.5192 80.2324 26.5195 80.2325 26.519 

80.2324 26.5192 80.2324 26.5196 80.2325 26.519 

80.2324 26.5192 80.2324 26.5196 80.2325 26.519 

80.2324 26.5192 80.2324 26.5197 80.2325 26.519 

80.2324 26.5192 80.2324 26.5197 80.2325 26.519 

80.2324 26.5193 80.2324 26.5197 80.2325 26.520 

80.2324 26.5193 80.2324 26.5198 80.2325 26.520 

80.2324 26.5193 80.2324 26.5198 80.2325 26.520 

80.2324 26.5193 80.2324 26.5199 80.2325 26.520 

80.2324 26.5193 80.2324 26.5199 80.2325 26.520 

80.2324 26.5193 80.2324 26.5199 80.2325 26.520 

80.2324 26.5194 80.2324 26.52 80.2325 26.520 

80.2324 26.5194 80.2324 26.52 80.2325 26.520 

80.2325 26.5194 80.2324 26.5201 80.2325 26.520 

80.2325 26.5194 80.2324 26.5201 80.2325 26.520 

80.2325 26.5194 80.2325 26.5201 80.2326 26.520 

80.2325 26.5194 80.2325 26.5202 80.2326 26.520 

80.2325 26.5195 80.2325 26.5202 80.2326 26.520 
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80.2325 26.5195 80.2325 26.5203 80.2326 26.520 

80.2325 26.5195 80.2325 26.5203 80.2326 26.520 

80.2325 26.5195 80.2325 26.5203 80.2326 26.520 

80.2325 26.5195 80.2325 26.5204 80.2326 26.520 

80.2325 26.5195 80.2325 26.5204 80.2326 26.520 

80.2325 26.5196 80.2325 26.5205 80.2326 26.520 

80.2325 26.5196 80.2325 26.5205 80.2326 26.520 

Table 6.3: Comparison of values of Longitude, Latitude using Exponential 

Smoothing, Newton Difference Method, and Dead Reckoning Technique 

 

Fig 6.16 Graphical Representation of Longitude, Latitude using (D.R, ES, ND) 

In contrast to the latitude of Newton difference, which is fairly distant from DR 

and ES, the values of longitude and latitude of dead reckoning superimpose with 

exponential smoothing in figure 6.16 given. As a consequence, exponential 

smoothing supports the outcome obtained through DR methodology. The latitude 

and longitude error percentages are seen to be quite low, which strongly supports 

the geodetic navigational conclusion. 
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SUMMARY 

The Dead Reckoning algorithm is used in this chapter to forecast Hansa-III's 

current location based on its prior location over elapsed time on estimated speed. 

The Newton-Difference method and Exponential Smoothing Technique are used 

to compare and validate the Dead Reckoning data in the form of longitude, 

latitude, and altitude. 
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CHAPTER- 7 

CONCLUSION AND FUTURE WORK 

 

An autopilot is a system that controls the vehicle trajectory without manual 

controls. The research work emphasizes the parameter estimation of research cum 

trainer aircraft along with the autopilot design for pitch control of the aircraft in 

addition to the Integration of the Dead Reckoning approach to estimate the position 

of Hansa-III Aircraft for future prediction.  

There is a lot of research on parameter estimation. A large researcher focused their 

work on parameter estimation by estimating parameters using several 

methodologies including OEM, FEM, and EEM, however, the study expanded not 

only in the parameter estimation area but also on the application side. To make the 

study stand out, the research effort has been expanded by constructing a pitch 

controller and putting a revolutionary navigational dead-reckoning approach into 

practice. 

 

The methodology adopted for Parameter Estimation is Maximum likelihood and an 

observation is made that Aerodynamic derivative values derived with ML are fairly 

accurate and close to W.T values for most datasets. There is a maximum deviation 

in the values from Wind Tunnel result in the case of pulse Input as compared to 

Multi-step and Doublet thus Multi-step elevator control input is more consistent as 

compared to different elevator Inputs.  

In the context of attitude control design in longitudinal motion, aircraft is modelled 

and a state-space representation of the system is developed, controllers are designed 

on MATLAB environment using Control System Toolbox thus performances in 
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Time and Frequency domain using different techniques such as Root-Locus, Pole-

Placement, Linear Quadratic Regulator are analysed and compared by setting some 

design specifications. 

In this thesis, the simulation results obtained using root-locus, pole-placement and 

LQR illustrate and conclude that the LQR controller settles rapidly as Ts is 0.44s 

as compared to pole-placement with excellent property of eliminating steady-state 

error to zero which justifies robust-free, good performance characteristics, the 

efficiency of the controller against disturbances. 

 

It is observed that no research paper is been published related to the navigation of 

Hansa-III henceforth, the dead reckoning navigational technique will be 

implemented to study the attitude, and orientation of the system so that it can be 

used for surveillance in terrain-prone areas, aerial photography, monitoring of 

floods/droughts. 

The study incorporates the implementation of the navigational approach to 

estimate aircraft position. The result of the Dead Reckoning approach is compared 

with exponential smoothing in the form of longitude, and latitude and concludes 

that the percentage error of Longitude, and latitude is found to be very less which 

validates the result dominantly. Integration Dead Reckoning and Designing 

autonomous control system of Hansa-III singularize the work and make study 

novel. 

FUTURE SCOPE 

The future prospects of the research on the basis of design techniques developed 

in this study are outlined as: 

1. Parameter Estimation of an Aircraft in a non-linear state is beyond the 
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range of this study so the Neural Gauss-Newton method may be applied to 

consider non-linear aerodynamics. NGN will be more effective than ML 

for stall conditions, and unsteady states. 

2. Non-linear MIMO Systems for controller design are beyond the scope of 

the research study. The proposed controller applies to SISO linear, time-

variant systems. 

3. An extension of the research work to design the attitude controllers (roll, 

Yaw) in lateral directional motion. 

4. The proposed methodology to use neural networks and fuzzy logic can be 

extended to integrate flexibility, and the accuracy of the controller. Fuzzy 

logic handle system and measurement noise effectively hence considered 

for future application as signal processing, control system, structural health 

monitoring, fault-tolerant detection control system, and monitoring of 

environmental disasters. System Identification of Gallinaceous machines, 

and electric flying cars such as urban air mobility (UAM) creating new 

opportunities in transport engineering that need to be investigated in 

future(Postorino & Sarné, 2020). 

5. One more extension of the research study is the incorporation of different 

types of aircraft as this study involves the research trainer aircraft, Hansa-

III. 

6. Fuzzy logic effectively handles system and measurement noise; as a result, 

it is being explored for use in the future in areas such as signal processing, 

control systems, monitoring structural health, fault-tolerant detection 

controls, and environmental disaster monitoring.  



173 
 

 

 

CHAPTER-8 

REFERENCES 

 

Ahn, H. S., Bhambhani, V., & Chen, Y. (2009). Fractional-order integral and 

derivative controller for temperature profile tracking. Sadhana - Academy 

Proceedings in Engineering Sciences, 34(5), 833–850. 

https://doi.org/10.1007/s12046-009-0049-2 

Ansari, S. A., Zbikowski, R., & Knowles, K. (2006). Aerodynamic modelling of 

insect-like flapping flight for micro air vehicles. Progress in Aerospace 

Sciences, 42(2), 129–172. https://doi.org/10.1016/j.paerosci.2006.07.001 

Ashraf, A., Mei, W., Gaoyuan, L., Kamal, M. M., & Mutahir, A. (2018). Linear 

Feedback and LQR Controller Design for Aircraft Pitch Control. 2018 IEEE 

4th International Conference on Control Science and Systems Engineering, 

ICCSSE 2018, 276–278. https://doi.org/10.1109/CCSSE.2018.8724780 

Asraf, O., Shama, F., & Klein, I. (2022). PDRNet: A Deep-Learning Pedestrian 

Dead Reckoning Framework. IEEE Sensors Journal, 22(6), 4932–4939. 

https://doi.org/10.1109/JSEN.2021.3066840 

Basu, A., Mohanty, S., & Sharma, R. (2016). Designing of the PID and FOPID 

controllers using conventional tuning techniques. Proceedings of the 

International Conference on Inventive Computation Technologies, ICICT 

2016, 2(1). https://doi.org/10.1109/INVENTIVE.2016.7824789 

Berman, Z. (1998). The Role of Dead Reckoning and Inertial Sensors in Future 

General Aviation Navigation. 0–7. 

Boeing-747. (n.d.). https://en.wikipedia.org/wiki/Boeing_747 

BOSSERT DAVID E, & KELLY, C. (2002). AIAA 2002-4646 PID and Fuzzy 

Logic Pitch Attitude Hold Systems for a Fighter Jet Dr . DAVID E . 

BOSSERT , Lt Col , USAF * US Air Force Academy Dr . KELLY COHEN , 

Lt Col , Israeli Ministry of Defense % Visiting Researcher , US Air Force 

Academy Table 1- Pl. Defense, August. 

Bryan, G. . (1911). Stability in Aviation: An Introduction to Dynamical Stability as 



174 
 

Applied to Motions of Aeroplane. 

Caetano, J., De Visser, C., De Croon, G., Remes, B., De Wagter, C., Verboom, J., 

& Mulder, M. (2013). Linear aerodynamic model identification of a flapping 

wing MAV based on flight test data. International Journal of Micro Air 

Vehicles, 5(4), 273–286. https://doi.org/10.1260/1756-8293.5.4.273 

Chauhan, R. K., & Singh, S. (2018). Review of aerodynamic parameter estimation 

techniques. 2017 International Conference on Infocom Technologies and 

Unmanned Systems: Trends and Future Directions, ICTUS 2017, 2018-Janua, 

864–869. https://doi.org/10.1109/ICTUS.2017.8286127 

Chrif, L., & Kadda, Z. M. (2014). Aircraft control system using LQG and LQR 

controller with optimal estimation-Kalman filter design. Procedia 

Engineering, 80, 245–257. https://doi.org/10.1016/j.proeng.2014.09.084 

Dang, K. N., Lee, G., & Kang, T. (2015). Linear quadrotor modelling and attitude 

controller design based on experimental data. ICCAS 2015 - 2015 15th 

International Conference on Control, Automation and Systems, Proceedings, 

Iccas, 472–476. https://doi.org/10.1109/ICCAS.2015.7364963 

Debaleena, M., Supritam, B., Bahswati, G., & Ratna, G. (2016). Guaranteed 

Performance PID Controller for UAV Pitch control. In IEEE (Ed.), IEEE first 

International Conference on Control, Measurement and Instumentation 

(CMI) (Issue Cmi, pp. 172–176). 

Deepa, S. N., & Sudha, G. (2016). Longitudinal control of aircraft dynamics based 

on optimization of PID parameters. Thermophysics and Aeromechanics, 

23(2), 185–194. https://doi.org/10.1134/S0869864316020049 

Devalla, V., & Prakash, O. (2014). Developments in unmanned powered parachute 

aerial vehicle: A review. IEEE Aerospace and Electronic Systems Magazine, 

29(11), 6–20. https://doi.org/10.1109/MAES.2014.130173 

Do Nascimento, P. P. L. L., Kimura, B. Y. L., Guidoni, D. L., & Villas, L. A. 

(2018). An integrated dead reckoning with cooperative positioning solution to 

assist GPS NLOS using vehicular communications. Sensors (Switzerland), 

18(9), 1–28. https://doi.org/10.3390/s18092895 

Dornier-228. (n.d.). https://en.wikipedia.org/wiki/Dornier_228 

Ellington, C. P. (1984). The aerodynamics of hovering insect flight. II. 

Morphological parameters. Philosophical Transactions of the Royal Society of 

London. B, Biological Sciences, 305(1122), 17–40. 

https://doi.org/10.1098/rstb.1984.0050 

Finck, R. D. (1978). USAF Stability and Control DATCOM. Flight Dynamics 

Labaratory, 18(4), 3200. 



175 
 

http://linkinghub.elsevier.com/retrieve/pii/0022460X71901052 

Fusini, L., Johansen, T. A., & Fossen, T. I. (2017). Dead reckoning of a fixed-wing 

UAV with inertial navigation aided by optical flow. 2017 International 

Conference on Unmanned Aircraft Systems, ICUAS 2017, 1250–1259. 

https://doi.org/10.1109/ICUAS.2017.7991433 

G.Mattos, P. (1994). Integrated gps and Dead Reckoning for low-cost vehicle 

navigation and tracking. 

George, V. I. (2012). Aircraft Yaw Control System using LQR and Fuzzy Logic 

Controller. 45(9), 25–30. 

Göttlicher, C., Gnoth, M., Bittner, M., & Holzapfel, F. (2016). Aircraft parameter 

estimation using optimal control methods. AIAA Atmospheric Flight 

Mechanics Conference, January, 1–18. https://doi.org/10.2514/6.2016-1534 

Grauer, J. A. (2015). Real-time data-compatibility analysis using output-error 

parameter estimation. Journal of Aircraft, 52(3), 940–947. 

https://doi.org/10.2514/1.C033182 

Greenberg, H. (1951). A survey of methods for determining stability parameters of 

an airplane from dynamic flight measurements. April. 

http://digital.library.unt.edu/ark:/67531/metadc55667/m2/1/high_res_d/1993

0082979.pdf 

Haddar, M., Chaari, R., Baslamisli, S. C., Chaari, F., & Haddar, M. (2021). 

Intelligent optimal controller design applied to quarter car model based on 

non-asymptotic observer for improved vehicle dynamics. Proceedings of the 

Institution of Mechanical Engineers. Part I: Journal of Systems and Control 

Engineering, 235(6), 929–942. https://doi.org/10.1177/0959651820958831 

Hamel, P. G. (1979). Aircraft Parametric Identification Methods and their 

application Survey and future aspects, AGARD (Issue c). 

Hamel, P. G. (2019). Advances in Aerodynamic Modeling for Flight Simulation and 

Control Design Advances in Aerodynamic Modeling for Flight Simulation and 

Control Design ∗. February. 

Hamel, P. G., & Jategaonkar, R. V. (1996a). Evolution of flight vehicle system 

identification. Journal of Aircraft, 33(1), 9–28. 

https://doi.org/10.2514/3.46898 

Hamel, P. G., & Jategaonkar, R. V. (1996b). Evolution of flight vehicle system 

identification. Journal of Aircraft, 33(1), 9–28. 

https://doi.org/10.2514/3.46898 

Hardier, G. (2015). An extended U-D algorithm with multiple forgetting factors for 



176 
 

rls estimation of model parameters. IFAC-PapersOnLine, 28(21), 200–207. 

https://doi.org/10.1016/j.ifacol.2015.09.528 

Hardier, G., & Bucharles, A. (2010). On-line parameter identification for in-flight 

aircraft monitoring. 27th Congress of the International Council of the 

Aeronautical Sciences 2010, ICAS 2010, 4, 2885–2896. 

Hardier, G., Ferreres, G., & Seren, C. (2016). A recursive estimation algorithm to 

track aircraft model parameters. Conference on Control and Fault-Tolerant 

Systems, SysTol, 2016-Novem, 790–797. 

https://doi.org/10.1109/SYSTOL.2016.7739844 

Harper, R. P., & Cooper, G. E. (1986). Handling qualities and pilot evaluation. 

Journal of Guidance, Control, and Dynamics, 9(5), 515–529. 

https://doi.org/10.2514/3.20142 

He, Z., & Zhao, L. (2014). A simple attitude control of quadrotor helicopter based 

on Ziegler-Nichols rules for tuning pd parameters. Scientific World Journal, 

2014. https://doi.org/10.1155/2014/280180 

Heredia, G., & Ollero, A. (2009). Sensor fault detection in small autonomous 

helicopters using observer/Kalman filter identification. IEEE 2009 

International Conference on Mechatronics, ICM 2009, 00(April). 

https://doi.org/10.1109/ICMECH.2009.4957236 

Hoffer, N. V., Coopmans, C., Jensen, A. M., & Chen, Y. (2013). Small low-cost 

unmanned aerial vehicle system identification: A survey and categorization. 

2013 International Conference on Unmanned Aircraft Systems, ICUAS 2013 

- Conference Proceedings, 897–904. 

https://doi.org/10.1109/ICUAS.2013.6564775 

Iliff, K. W. (1989). Parameter Estimation for Flight Vehicles. J. Guidance 

September-October, 12(5). 

JAISWAL, R., & PRAKASH, O. (2022). Classical and Modern gain estimation 

approach of PID controller for the pitch control of the RCTA aircraft. INCAS 

BULLETIN, 14(1), 39–56. https://doi.org/10.13111/2066-8201.2022.14.1.4 

Jaiswal, R., Prakash, O., & Chaturvedi, S. K. (2020). A preliminary study of 

parameter estimation for fixed wing aircraft and high endurability parafoil 

aerial vehicle. INCAS Bulletin, 12(4), 95–109. https://doi.org/10.13111/2066-

8201.2020.12.4.9 

Jameson, P. D., & Cooke, A. (2012a). Developing real-time system identification 

for UAVs. Proceedings of the 2012 UKACC International Conference on 

Control, CONTROL 2012, September, 958–963. 

https://doi.org/10.1109/CONTROL.2012.6334761 



177 
 

Jameson, P. D., & Cooke, A. (2012b). Developing real-time system identification 

for UAVs. Proceedings of the 2012 UKACC International Conference on 

Control, CONTROL 2012, September, 958–963. 

https://doi.org/10.1109/CONTROL.2012.6334761 

Jategaonkar, R. V. (2015). Flight Vehicle System Identification: A Time-Domain 

Methodology, Second Edition. In Flight Vehicle System Identification: A 

Time-Domain Methodology, Second Edition. American Institute of 

Aeronautics and Astronautics, Inc. https://doi.org/10.2514/4.102790 

Jayachandran, M., Manikandan, J., & Hwegy, Y. (2009). DESIGN OF A STAND 

ALONE NAVIGATION SYSTEM USING POSITION ESTIMATION 

ALGORITHM. Transport, 2, 539–542. 

Jo, D., & December, H. (2017). LINEAR SYSTEMS THEORY (2nd ed.). 

Juang, J. N., & Suzuki, H. (1986). An eigensystem realization algorithm in 

frequency domain for modal parameter identification. Astrodynamics 

Conference, 1986, 8(5), 620–627. https://doi.org/10.2514/6.1986-2048 

Kasebzadeh, P. (2017). Parameter Estimation for Mobile Positioning Applications. 

In Parameter Estimation for Mobile Positioning Applications (Issue 1786). 

https://doi.org/10.3384/lic.diva-141877 

Khalid, A., Zeb, K., & Haider, A. (2019). Conventional PID, adaptive PID, and 

sliding mode controllers design for aircraft pitch control. 2019 International 

Conference on Engineering and Emerging Technologies, ICEET 2019, 1–6. 

https://doi.org/10.1109/CEET1.2019.8711871 

Kim, E. T., Seong, K. J., & Kim, Y. C. (2015). A study on parameter estimation for 

general aviation canard aircraft. International Journal of Aeronautical and 

Space Sciences, 16(3), 425–436. https://doi.org/10.5139/IJASS.2015.16.3.425 

Kisabo, A. (2012). Pitch Control of an Aircraft Using Artificial Intelligence. 

Journal of Scientific Research and Reports, 1(1), 1–16. 

https://doi.org/10.9734/jsrr/2012/2008 

Klein, V. (1989). Estimation of aircraft aerodynamic parameters from flight data. 

Progress in Aerospace Sciences, 26(1), 1–77. https://doi.org/10.1016/0376-

0421(89)90002-X 

Klien, V., & Morelli, E. A. (2006). Aircraft System Identification: Theory and 

Practice. AIAA Education series. 

Kornienko, A., & Well, K. H. (2003). Estimation of longitudinal motion of a 

remotely controlled airship. AIAA Atmospheric Flight Mechanics Conference 

and Exhibit, August, 1–9. https://doi.org/10.2514/6.2003-5697 



178 
 

Kuehme, D., Alley, N. R., Phillips, C., & Cogan, B. (2014). Flight test evaluation 

and system identification of the Area-I Prototype-Technology-Evaluation 

Research Aircraft (PTERA). AIAA Flight Testing Conference 2014, June, 1–

74. https://doi.org/10.2514/6.2014-2577 

Kumar, R. (2012). Parameter Estimation Using Flight Data Of Air Vehicles At Low 

And Moderately High Angles Of Attack Using Conventional And Neural based 

Methods. IIT Kanpur. 

Kumar, R., & Ghosh, A. K. (2014). Estimation of aerodynamic derivatives using 

neural network based method. In IFAC Proceedings Volumes (IFAC-

PapersOnline) (Vol. 3, Issue PART 1). IFAC. 

https://doi.org/10.3182/20140313-3-IN-3024.00057 

Kumar, R., & Ghosh, A. K. (2015). Nonlinear Aerodynamic Modeling from Flight 

Data at High Angles of Attack Using Neural-Gauss-Newton Method. June, 1–

13. https://doi.org/10.2514/6.2015-2707 

Kumar, V., & Patra, A. (2016). Application of Ziegler-Nichols Method for Tuning 

of PID Controller. 2nd International Conference on Recent Innovations in 

Science, Technology, Management and Environment, 2011, 138–149. 

http://www.arresearchpublication.com/images/shortpdf/1479279897_127ijee

e.pdf 

Leontaritis, I. J., & Billings, S. A. (1985). Input-output parametric models for non-

linear systems Part I: Deterministic non-linear systems. International Journal 

of Control, 41(2), 303–328. https://doi.org/10.1080/0020718508961129 

Lichota, P., Dul, F., & Karbowski, A. (2020). System identification and LQR 

controller design with incomplete state observation for aircraft trajectory 

tracking. Energies, 13(20). https://doi.org/10.3390/en13205354 

Ljung, L., & Gunnarsson, S. (1990). Adaptation and tracking in system 

identification-A survey. Automatica, 26(1), 7–21. 

https://doi.org/10.1016/0005-1098(90)90154-A 

Mahmoud, T., & Trilaksono, B. R. (2018). Integrated INS/GPS navigation system. 

International Journal on Electrical Engineering and Informatics, 10(3), 491–

512. https://doi.org/10.15676/ijeei.2018.10.3.6 

Maine, E., & Iliff, W. (1986). Application Estimation Stability and of Parameter to 

Aircraft Control Approach The Output-Error. Nasa-Rp-1168, 175. 

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19870020066.pdf 

Melody, J. W., Basar, T., Perkins, W. R., & Voulgaris, P. G. (2000). Parameter 

identification for inflight detection and characterization of aircraft icing. 

Control Engineering Practice, 8(9), 985–1001. https://doi.org/10.1016/s0967-

0661(00)00046-0 



179 
 

Milliken W.F.Jr. (2003). Progress in Dynamic stability and control research. 

Journal Of The Aeronautical Sciences, 40(6), 145–160. 

Mohammad Shahrokhi and Alireza Zomorrodi. (2005). comparison of PID 

controller tuning methods. https://doi.org/10.1002/cjce.5450830412 

Morelli, E. A., & Grauer, J. A. (2020). Practical aspects of frequency-domain 

approaches for aircraft system identification. Journal of Aircraft, 57(2), 268–

291. https://doi.org/10.2514/1.C035599 

Morino, L. (1974). General Theory of Unsteady Compressible Potential 

Aerodynamics. NASA Contractor Reports, Cr-2464. 

Nagoor Kani - Control System Engineering-RBA (2013).pdf. (n.d.). 

NAL. (2000). Hansa-3 TC&TCDS.pdf. 

https://doi.org/http://164.100.60.133/type_acceptance/Hansa-

3%20TC&TCDS.pdf 

NAL Hansa. (2000). https://en.wikipedia.org/wiki/NAL_Hansa 

Nelson, R. C. (1989). Flight Stability and Automatic Control. In Book (Second). 

Tata McGraw-Hill. 

Nelson, R. C. (1998). Flight stability and automatic control. WCB/McGraw Hill. 

Pallett, E. H. . (1954). Aircraft electrical systems. In Nature (Vol. 174, Issue 4439). 

https://doi.org/10.1038/1741001a0 

Pedro Paulo Liborio Lima do Nascimento,Leandro Aparecido Villas,Bruno Yuji 

Lino Kimura, D. L. G. (2018). An Integrated Dead Reckoning with 

Cooperative Positioning Solution to Assist GPS NLOS Using Vehicular 

Communications. Sensors (Switzerland). 

Peyada, N. K., Sen, A., & Ghosh, A. K. (2008). Aerodynamic Characterization of 

HANSA-3 aircraft using Equation Error, Maximum Likelihood and Filter 

Error Methods. Lecture Notes in Engineering and Computer Science, 2169(1), 

1902–1907. 

Postorino, M. N., & Sarné, G. M. L. (2020). Reinventing mobility paradigms: 

Flying car scenarios and challenges for urban mobility. Sustainability 

(Switzerland), 12(9), 1–16. https://doi.org/10.3390/SU12093581 

Psas, M. I. T., Report, T., Leveson, N., Wilkinson, C., Fleming, C., Thomas, J., & 

Tracy, I. (2014). A Comparison of STPA and the ARP 4761 Safety Assessment 

Process 1. 1–79. 

Queijo, M. J., Wells, W. R., & Keskar, D. A. (1978). Approximate Indicial Lift 

Funtion for Tapered, Swept Wings in Incompressible Flow. August. 



180 
 

Queijo, M. J., Wells, W. R., & Keskar, D. A. (1979). Inclusion of Unsteady 

Aerodynamics in Longitudinal Parameter Estimation From flight data. 

December. 

Radhakant Padhi, D. of A. E. (n.d.). Advanced Control System Design. NPTEL, 

IISC Bangalore. http://nptel.iitm.ac.in 

Radhakant PadhiDepartment of Aerospace Engineering, I. B. (n.d.). Advanced 

Control System Design. http://nptel.iitm.ac.in 

Raisinghani, S. ., & Ghosh, A. . (n.d.). Parameter Estimation of an Augmented 

Airplane with Unsteady Aerodynamic Modeling. Proceedings of the 17th Int. 

Symp. on Space Technology and Science. 

Raja, M., & Prakash, O. (2020). Design of high pointing accuracy NPSAT-1 

satellite attitude systems of armature controlled DC motor with utilization for 

PD controller. INCAS Bulletin, 12(1), 145–156. 

https://doi.org/10.13111/2066-8201.2020.12.1.14 

Ramesh, N. G., Balaji, J., N, D. K., Dharshan, L., & Dileep, H. R. (2020). DESI G 

N AND FABRICATION OF ORNITHOPTER. 940–944. 

Reddy, G. S., & Saraswat, V. K. (2013). Advanced navigation system for aircraft 

applications. Defence Science Journal, 63(2), 131–137. 

https://doi.org/10.14429/dsj.63.4254 

Robert, J. (n.d.). The Unsteady lift of a finite wing. 

Robinson, J. D. (1991). A Linear Quadratic Regulator weight selection algorithm 

for robust pole assignment. 

Roudbari, A., & Saghafi, F. (2016). Generalization of ANN-based aircraft 

dynamics identification techniques into the entire flight envelope. IEEE 

Transactions on Aerospace and Electronic Systems, 52(4), 1866–1880. 

https://doi.org/10.1109/TAES.2016.140693 

SABHARWAL, W. C. D. (2003). Flight : The basic book; 100 years of Aviation. 

Saderla, S., Dhayalan, R., Singh, K., Kumar, N., & Ghosh, A. K. (2019). 

Longitudinal and lateral aerodynamic characterisation of reflex wing 

Unmanned Aerial Vehicle from flight tests using Maximum Likelihood, Least 

Square and Neural Gauss Newton methods. Aeronautical Journal, 123(1269), 

1807–1839. https://doi.org/10.1017/aer.2019.70 

Seckel, E., & Morris, J. (1971). the Stability Derivatives of the Havion Aircraft 

Estimated By Various Methods and Derived From Flight Test Data. 35. 

Sgobba, T. (2019). B-737 MAX and the crash of the regulatory system. Journal of 

Space Safety Engineering, 6(4), 299–303. 



181 
 

https://doi.org/10.1016/j.jsse.2019.09.006 

Shinbrot, M. (1951). A Least square Curve Fitting Method with Applications to the 

Calculation of Stability Coefficients from Transient Response Data. Naca Tn 

2341. 

Shurin, A., & Klein, I. (2020). QDR: A quadrotor dead reckoning framework. IEEE 

Access, 8, 204433–204440. https://doi.org/10.1109/ACCESS.2020.3037468 

Singh, J., & IIT Kanpur. (n.d.). Unsteady Aerodynamic Modeling for Parameter 

Estimation from Flight Data. 

SPACE india. (1988). 

Srinivasan, K. (2006). Chapter 18 Control System Design Using State-Space 

Methods Quadratic Regulator Quadratic Regulator Conclusion. 2. 

Stojiljković, B., Vasov, L., Mitrović, Č., & Cvetković, D. (2009). The application 

of the root locus method for the design of pitch controller of an F-104A 

aircraft. Strojniski Vestnik/Journal of Mechanical Engineering, 55(9), 555–

560. 

Sushamshushekar Doddabasappa. (2019). LQR CONTROL DESIGN FOR A DC-

DC CONVERTER USING SENSITIVITY FUNCTIONS. In Αγαη (Vol. 8, 

Issue 5). The Pennsylvania State University The Graduate School. 

Tang, L., Roemer, M., Ge, J., Crassidis, A., Prasad, J. V. R., & Belcastro, C. 

(2009a). Methodologies for adaptive flight envelope estimation and 

protection. AIAA Guidance, Navigation, and Control Conference and Exhibit, 

August, 1–14. https://doi.org/10.2514/6.2009-6260 

Tang, L., Roemer, M., Ge, J., Crassidis, A., Prasad, J. V. R., & Belcastro, C. 

(2009b). Methodologies for Adaptive Flight Envelope Estimation and 

Protection. 

Timeline of HAL Tejas. (n.d.). 

https://en.wikipedia.org/wiki/Timeline_of_HAL_Tejas 

Tischler, M., & Remple, R. (2006). Aircraft and Rotorcraft System Identification, 

Engineering Methods with Flight Test Examples. AIAA Education series. 

https://doi.org/10.2514/4.861352 

Torabi, A., Ahari, A. A., Karsaz, A., & Kazemi, S. H. (2021). Intelligent Pitch 

Controller Identification and Design. International Journal of Mathematics 

and Computers in Simulation, 15, 134–140. 

https://doi.org/10.46300/9102.2021.15.25 

Usta, M. A., Akyazi, Ö., & Akpinar, A. S. (2011). Aircraft roll control system using 

LQR and fuzzy logic controller. INISTA 2011 - 2011 International Symposium 



182 
 

on INnovations in Intelligent SysTems and Applications, 223–227. 

https://doi.org/10.1109/INISTA.2011.5946069 

Verma, H. O., & Peyada, N. K. (2021). Estimation of aerodynamic parameters near 

stall using maximum likelihood and extreme learning machine-based 

methods. Aeronautical Journal, 125(1285), 489–509. 

https://doi.org/10.1017/aer.2020.95 

Villarreal-Valderrama, F., Takano De La Cruz, L., Alvarez, U., Amezquita-Brooks, 

L., & Liceaga-Castro, E. (2019). Design of an aircraft pitch control 

experimental test bench. 2018 IEEE International Autumn Meeting on Power, 

Electronics and Computing, ROPEC 2018, Ropec. 

https://doi.org/10.1109/ROPEC.2018.8661430 

W. Ahmed, Z.Li, M. I. (2019). Multi-objective Eigenstructure Assignment-PID 

Based Controller Design for Longitudinal Motion of Aircraft. International 

Conference on Control Science and System Engineering, ICCSSE, IEEE. 

Wahid, N., & Hassan, N. (2012). Self-tuning fuzzy PID controller design for 

aircraft pitch control. Proceedings - 3rd International Conference on 

Intelligent Systems Modelling and Simulation, ISMS 2012, 19–24. 

https://doi.org/10.1109/ISMS.2012.27 

Wahid, N., & Rahmat, M. F. ad. (2010). Pitch control system using LQR and fuzzy 

logic controller. ISIEA 2010 - 2010 IEEE Symposium on Industrial Electronics 

and Applications, Isiea, 389–394. 

https://doi.org/10.1109/ISIEA.2010.5679436 

Wells, W. R., Banda, S. S., and Quam, D. L. (1979). A model for unsteady effects 

in Lateral Dynamics for use in Parameter Estimation. AIAA Paper. 

Yibo Li, Chao Chen, W. C. (n.d.). Research on Longitudinal Control Algorithm for 

Flying Wing UAV based on LQR Technology. Int’l Journal on Smart Sensing 

and Intelligent Systems, 6(5). 

Zadeh, L. A. (1962). From Circuit Theory to System Theory. Proceedings of the 

IRE, 50(5), 856–865. https://doi.org/10.1109/JRPROC.1962.288302 

  

 

 

 



183 
 

 

APPENDIX- A 

CURRICULUM VITAE 

 
 

Roli is a Research Scholar with 6.5 years of teaching and Industrial experience. 

Her ambition is to Pursue a challenging career and be a part of progressive 

organization that gives scope to enhance skills, knowledge and to reach 

pinnacle in this field with sheer determination, hard work and dedication so 

that her experience can be utilized and makes good use of for the organization. 

 
Subjects comfortable to teach incudes: 

Control Systems 

System Identification: Includes Kalman 

Filtering, ML Approaches etc. Fluid 
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10TH 2005 C.B.S. E First Class 77.8% 

 

 

 
 

1. Involved in a project on comparison and analysis of AVRO class TURBO 

PROP Engine. 
 

Details: Study of AVRO class of ROLLS ROYCE DART Engine 

characteristics and comparisons with some suitable engines like PRATT& 

WHITNEY CANADA - PW123AF, PW124B, PW125B PW127Eand 

KLIMOV COOPERATION, RUSSIA –TV7-117S, TV7-117S SERIES2 to 

find out engine with better SFC and Performance. 

Organization: 

Education: 
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Conclusion: TV7-117S SERIES2 (RUSSIAN) Engine can replace ROLLS 

ROYCE Dart533-2. 

• SFC is reduced which helps in saving fuel cost. 

• Low engine weight. 

• About 300 crores is being saved per 200 hours. 

2. Involved in a project on aircraft material standards (from German std. to 

British, Italy, France, and USA) of aircraft parts. 

• It helps in comparing & finding the substitute of parts of aircraft material. 

3. Optimization of Aerofoil (Symmetrical, cambered) by analytical method on 

selection of series of Aerofoils by JAVAFOIL Software from IIT, Kanpur 

 

 
 

Date of Birth 03.11.1990 

Pan card No. AUCPJ1037E 

Gender Female 
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Language Known English, Hindi, Bangla 
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APPENDIX- B 

MATLAB CODES 

B1. ZIEGLER NICHOLAS METHOD 

 

 

%% Zieger nicholas method  

clear all 

clc 

 

%Define plant transfer function 

G_NUM=[0 0 0 55.94 103.3]; 

G_DEN=[1 10.07 31.18 101.8 103.3]; 

KU=1.34;  %% ROUTH HURWITZ CRITERION 

TU=1.504; %% SIMULINK BLOCK DIAGRAM 

%% LOOK THE VALUE OF KP, Ti, Td 

KP=0.6*KU; % CLASSIC PID 

Ti=0.5*TU; % CLASSIC PID 

Td=TU/8; % CLASSIC PID 

%% COMPUTE Ki and Kd 

Ki=1.2*KU/TU; % CLASSIC PID 

Kd=0.075*KU*TU; % CLASSIC PID 

%%COMPUTE Ki and Kd 

Kp=0.45*KU; % PI CONTROLLER 

ti=TU/1.2;  %PI CONTROLLER 

%% COMPUTE Ki 

ki=054*KU/TU; %PI CONTROLLER 

%% unstable characteristics using PI CONTROLLER IN SIMULINK B/D 

%%%% COMPUTE  Kd FOR PD CONTROLLEr 

kp=0.8*KU; 

td=TU/8; 

kd=0.1*KU*TU; 

%% STABLE CHARACTERISTICS USING PD CONTROLLER IN 

SIMULINK B/D 

 

 

B2.MODIFIED ZIEGLER NICHOLAS METHOD 

 

 

%%  Modified Zieger nicholas method  

clear all 
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clc 

%Define plant transfer function 

G_NUM=[0 0 0 55.94 103.3]; 

G_DEN=[1 10.07 31.18 101.8 103.3]; 

KU=0.3;  %% ROUTH HURWITZ CRITERION 

TU=1.873; %% SIMULINK BLOCK DIAGRAM 

%% LOOK THE VALUE OF KP, Ti, Td 

KPmzn=0.33*KU; % CLASSIC PID 

%% COMPUTE Ki and Kd 

Kimzn=0.5*TU; % CLASSIC PID 

Kdmzn=0.33*TU; % CLASSIC PID 

 

B3. ASTROM- HAGGULUND METHOD 

 

 

%%  Astrom-Haggulund  method  

clear all 

clc 

%Define plant transfer function 

G_NUM=[0 0 0 55.94 103.3]; 

G_DEN=[1 10.07 31.18 101.8 103.3]; 

KU=0.3;  %% ROUTH HURWITZ CRITERION 

TU=1.873; %% SIMULINK BLOCK DIAGRAM 

%% LOOK THE VALUE OF KP, Ti, Td 

Kpag=0.33*KU; % CLASSIC PID 

%% COMPUTE Ki and Kd 

KIag=0.94*TU; % CLASSIC PID 

KDag=0; % CLASSIC PID 

 

 

B4. TYREUS LUYBEN METHOD 

 

 

%%  Tyreus luyben method  

clear all 

clc 

%Define plant transfer function 

G_NUM=[0 0 0 55.94 103.3]; 

G_DEN=[1 10.07 31.18 101.8 103.3]; 

KU=1.3400;  %% ROUTH HURWITZ CRITERION 

TU=1.5040; %% SIMULINK BLOCK DIAGRAM 

%% LOOK THE VALUE OF KP, Ti, Td 

Kpcl=0.3125*KU; % CLASSIC PID 

%% COMPUTE Ki and Kd 

KIcl=2.2*TU; % CLASSIC PID 

KDcl=0.158*TU; % CLASSIC PID 
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B5. POLE- PLACEMENT ALGORITHM 

 

 

clc 

%define state and control matrices 

A= [-1.851 0.8207 0;-4.403 -2.01 0;0 1 0];     

B= [0.00562;8.95;0]; 

C= [0 0 1]; 

D= [0]; 

initialX = [1;0;0]; 

% create state space object 

sys=ss(A,B,C,D); 

%CHECK OPEN LOOP EIGEN VALUES 

E=eig(A) 

% %desired closed loop poles using butterworth polynomial equation 

P= [-1.35+2.338i -1.35-2.338i -1.3]; 

 % %solve for K using pole placement 

GainK = acker(A,B,P); 

disp('Feedback Gain Matrix: '); 

disp(GainK); 

 % OR USE place to determine  closed loop system gain  

 % GAIN= place(A,B,P) 

% %CHECK for closed loop eigen values 

 Acl= A-B*GainK; 

 Ecl= eig(Acl) 

% % %create closed loop system 

 syscl= ss(Acl,B,C,D); 

% %CHECK STEP RESPONSE 

 step(0.2*syscl) 

 %solve for kr 

 kdc= dcgain(syscl); 

 kr=1/kdc 

% % %create scaled input closed system 

 syscl_scaled = ss(Acl,B*kr,C,D); 

 step(syscl_scaled) 

 %ylabel('pitch angle (rad)'); 

title('Closed-Loop Step Response: pole placement'); 

 

B6. LINEAR QUADRATIC REGULATOR 

 

A= [-1.851 0.8207 0 

    -4.403 -2.01 0 

    0 1 0 ];     

B= [0.00562;8.95;0];  

C= [0 0 1]; 

D= [0]; 

poles= eig(A) 
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%% poles lies in complex left side of the plane hence system is stable 

%poles = 

%% 0.0000 + 0.0000i 

%%-1.9305 + 1.8993i 

%%-1.9305 - 1.8993i 

rank(ctrb(A,B)); 

rank(obsv(A,C)); 

p = 400; 

Q = p*C'*C; 

R = 1; 

[K] = lqr(A,B,Q,R) 

sys_cl = ss(A-B*K, B, C, D); 

step(0.2*sys_cl); 

ylabel('pitch angle (rad)'); 

title('Closed-Loop Step Response: LQR'); 

%  p = 400; 

%  Q = p*C'*C; 

% R = 1; 

% [K] = lqr(A,B,Q,R); 

%  Nbar = rscale(A,B,C,D,K) 

% sys_cl = ss(A-B*K,B*Nbar,C,D) 

% step(0.2*sys_cl); 

%  ylabel('pitch angle (rad)'); 

%  title('Closed-Loop Step Response: LQR with Precompensation'); 

 

B7. CARTESIAN COORDINATES TO GEODETIC COORDINATES 

CONVERSION CODE 

X=xyaS2(:,1); 

Y=xyaS2(:,2); 

Z=xyaS2(:,3); 

X=X{:,1}; 

Y=Y{:,1}; 

Z=Z{:,1}; 

% Y=double(Y'); 

% Z=double(Z'); 

origin= [80.232293 ,26.518886 ,126.63]; 

[lat,lon]=local2latlon(X,Y,Z,origin); 

%save latlon_rad.txt 

zoomlevel=12; 

player = geoplayer(lat(1) ,lon(1),zoomLevel); 

plotRoute(player,lat,lon); 
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APPENDIX –C 

 

 C.1 EQUATIONS OF MOTION  

A stationary aircraft uses an earth axes system also termed an inertial frame of 

reference for deriving the equation of motion in an inertial reference frame. 

Expression of Newton’s second law of motion: 

   ∑ 𝐹⃗ =  
𝑑

𝑑𝑡
 𝑚𝑣⃗    C.1 

   ∑ 𝑀⃗⃗⃗ =  
𝑑

𝑑𝑡
 (𝐻⃗⃗⃗)                                                                                                              C.2 

Where F, M, H, m, and v are the net force components (aerodynamic, 

structural, propulsive, gravitational), net Moment, angular momentum, the 

mass of the aircraft, and velocity. 

Force equation in X, Y, and Z direction is expressed as follows:  

𝐹𝑥
⃗⃗⃗⃗ =  

𝑑

𝑑𝑡
(𝑚𝑢)⃗⃗⃗⃗⃗                                                                                                              C.3 

𝐹𝑦
⃗⃗ ⃗⃗ =  

𝑑

𝑑𝑡
(𝑚𝑣⃗)                                                                                                               C.4 

  𝐹𝑧
⃗⃗⃗⃗ =  

𝑑

𝑑𝑡
(𝑚𝑤⃗⃗⃗)                                                                                                                C.5 

where u, v, and w are the components of forces in X, Y, Z directions 

respectively. Similarly, the moment equation is expressed as: 

 𝐿⃗⃗⃗ =  
𝑑

𝑑𝑡
(𝐻𝑥)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                                                                                                      C.6 

𝑀⃗⃗⃗ =  
𝑑

𝑑𝑡
(𝐻𝑦)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

C.7 

𝑁⃗⃗⃗ =  
𝑑

𝑑𝑡
(𝐻𝑧) ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗                                                                                                                      C.8 

 

 

where L, M, and N are the rolling moment, pitching moment, yawing moment 

and 𝐻𝑥, 𝐻𝑦, 𝐻𝑧 refers to angular momentum in X, Y, and Z directions. 
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Consider δ m as the elemental mass of the airplane, 𝑣 is the velocity in an inertial 

frame of reference, and δ F stands for net force acting on δm thus  

𝐹⃗= ∑𝛿𝐹   and δ𝐹̅ = δm
𝑑𝑉̅

𝑑𝑡
                                                                                                   C.9 

  Thus the velocity of elemental mass δ m is  

 𝑣⃗⃗⃗ ⃗ =  (𝑣𝑐)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ +  
𝑑𝑟

𝑑𝑡
                                                                                                                  C.10 

Where 𝑣𝑐  refers to the velocity of the center of mass and  
𝑑𝑟

𝑑𝑡
  stands for 

velocity for the center of mass. Now substituting equation (3.10) into (3.9) 

yields  

𝐹⃗= ∑𝛿𝐹  =  
𝑑

𝑑𝑡
 ∑( 𝑣𝑐⃗⃗ ⃗⃗ +  

𝑑𝑟

𝑑𝑡
) δ 𝑚                                                                                   C.11 

𝐹⃗ = 𝑚 
𝑑𝑣𝑐⃗⃗⃗⃗⃗

𝑑𝑡
  + 

𝑑

𝑑𝑡
 ∑

𝑑𝑟

𝑑𝑡
 δ 𝑚                                                                                               C.12 

𝐹⃗= 𝑚 
𝑑𝑣𝑐⃗⃗⃗⃗⃗

𝑑𝑡
  + 

𝑑2

𝑑𝑡2
∑𝑟δ 𝑚                                                                                                  C.13 

Where r is the position vector measured from the center of mass thus ∑𝑟δ 𝑚  

is zero and the new force equation formulated as      

𝐹⃗= 𝑚 
𝑑𝑣𝑐⃗⃗⃗⃗⃗

𝑑𝑡
                                                                                                                 C.14 

Similarly rewriting moment equation 3.2 as the force equation as  

𝛿𝑀⃗⃗⃗ = 
𝑑

𝑑𝑡
 𝛿𝐻⃗⃗⃗                                                                                                                    C.15 

Where M is the moment and H is angular momentum.  H is written in vector 

form as  

𝐻⃗⃗⃗  = 𝑟 ×   𝑝⃗               and        𝛿𝐻⃗⃗⃗     = (𝑟 ×   𝑣⃗ ) δ 𝑚 C.16 

Now substituting the value of  𝛿𝐻⃗⃗⃗  from equation 3.16 to 3.15 and written as  

    𝛿𝑀⃗⃗⃗ = 
𝑑

𝑑𝑡
 (𝑟 ×   𝑣⃗ ) δ 𝑚                                                                                                  C.17 

 

The velocity of elemental mass can be expressed in form of position vector ‘r’ 

in an inertial frame of reference as 
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 𝑣⃗⃗⃗ ⃗ =  (𝑣𝑐)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ +  
𝑑𝑟

𝑑𝑡
   +  (𝜔⃗⃗⃗ ×   𝑟)⃗⃗⃗⃗    C.18 

Where 𝑣𝑐  refers to the velocity of the center of mass,  
𝑑𝑟

𝑑𝑡
  stands for velocity for 

the center of mass,  𝜔⃗⃗⃗  is the angular velocity of the aircraft, and   𝑟  as position 

vector of elemental mass. The net moment can be expressed by substituting the 

value of equation 3.18 to 3.16 as 

𝐻⃗⃗⃗ = ∑ 𝛿𝐻⃗⃗⃗   = ∑𝑟δ 𝑚 ×  𝑣𝑐   +  ∑[𝑟 ×  (𝜔⃗⃗⃗ ×   𝑟)⃗⃗⃗⃗  ] δ 𝑚                                              C.19 

The first term of equation 3.19 ∑𝑟δ 𝑚  is substituted as zero as r is the position 

vector measured from the center of mass.  Now the equation is reduced to  

𝐻⃗⃗⃗ = ∑[𝑟 ×  (𝜔⃗⃗⃗  ×    𝑟)⃗⃗⃗⃗  ] δ 𝑚                                                                                             C.20 

Where 𝑟 = 𝑥𝑖̂ +𝑦𝑗̂ + 𝑧𝑘̂  

 𝜔⃗⃗ ⃗⃗  = 𝑝𝑖̂ +𝑞𝑗̂ + 𝑟𝑘̂ 

Solving equation 3.20 using𝑟,  𝜔⃗⃗ ⃗⃗  is expressed as  

(𝜔⃗⃗⃗  ×    𝑟)⃗⃗⃗⃗  =     [
𝑖̂ 𝑗̂ 𝑘̂
𝑝 𝑞 𝑟
𝑥 𝑦 𝑧

]                        

(𝜔⃗⃗⃗  ×    𝑟)⃗⃗⃗⃗  =      𝑖̂[𝑞𝑧 − 𝑟𝑦] − 𝑗̂[𝑝𝑧 − 𝑥𝑟] + 𝑘̂[ 𝑝𝑦 − 𝑞𝑥]                                                                    C.21 

[𝑟⃗⃗⃗⃗ ×   (𝜔⃗⃗⃗  ×    𝑟)⃗⃗⃗⃗ ] =   [
𝑖̂ 𝑗̂ 𝑘̂
𝑥 𝑦 𝑧

𝑞𝑧 − 𝑟𝑦 𝑥𝑟 − 𝑝𝑧 𝑝𝑦 − 𝑞𝑥
]                      

=  𝑖̂[𝑝𝑦2 − 𝑞𝑥𝑦 − 𝑟𝑥𝑧 + 𝑝𝑧2] − 𝑗̂[𝑝𝑥𝑦 − 𝑞𝑥2 − 𝑞𝑧2 + 𝑟𝑦𝑧] + 𝑘̂[ 𝑝𝑥2 −

𝑝𝑧𝑥 − 𝑞𝑦𝑧 + 𝑟𝑦2]       

Substituting the above equation in equation no (3.20) to get moment equations 

in X, Y,  and  Z direction              

𝐻𝑥= 𝑝 ∑( 𝑦2 + 𝑧2) δ 𝑚 - 𝑞 ∑𝑥𝑦  δ 𝑚 - 𝑟 ∑𝑥𝑧δ 𝑚 C.22 

𝐻𝑦= 𝑞 ∑( 𝑥2 + 𝑧2) δ 𝑚 - 𝑝 ∑𝑥𝑦  δ 𝑚 - 𝑟 ∑𝑦𝑧δ 𝑚 C.23 

𝐻𝑧= 𝑟 ∑( 𝑥2 + 𝑦2) δ 𝑚 - 𝑞 ∑𝑦𝑧  δ 𝑚 - 𝑝 ∑𝑥𝑧δ 𝑚    C.24 
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The moment and product of inertia of aircraft are defined in the below section: 

𝐼𝑥 = ∭(𝑦2 + 𝑧2)𝛿𝑚                             𝐼𝑥𝑦 = ∭(𝑥𝑦)𝛿𝑚               

𝐼𝑦 = ∭(𝑥2 + 𝑧2)𝛿𝑚                            𝐼𝑥𝑧 = ∭(𝑥𝑧)𝛿𝑚   C.25 

𝐼𝑧 = ∭(𝑥2 + 𝑦2)𝛿𝑚                            𝐼𝑦𝑧 = ∭(𝑦𝑧)𝛿𝑚                                                

   Where  𝐼𝑥,  𝐼𝑦, 𝐼𝑧 are the mass moment of inertia of the system in x, y, and z 

directions respectively. While substituting equation 3.23 in equation 3.22 the 

moment of momentum equation is expressed as 

𝐻𝑥= 𝑝𝐼𝑥- 𝑞𝐼𝑥𝑦 - 𝑟 𝐼𝑥𝑧 C.26 

𝐻𝑦= 𝑞𝐼𝑦 - 𝑝𝐼𝑥𝑦 - 𝑟𝐼𝑦𝑧 C.27 

𝐻𝑧= 𝑟𝐼𝑧- 𝑞𝐼𝑦𝑧 - 𝑝 𝐼𝑥𝑧                                                                                                          C.28 

 C.2 Transformation of equations in a rotational frame from an inertial 

frame of reference         

The vector identity used to transform the inertial frame of reference to the body 

fixed frame of reference is represented as: 

|
𝑑𝐴

𝑑𝑡
|
𝐼𝐹

= |
𝑑𝐴

𝑑𝑡
|
𝐵𝐹

 + ω× 𝐴                                                                               C.29 

Where ω is the angular velocity of vector A, IF is the inertial frame of reference, 

and BF is the body-fixed frame of reference. The identity applied to an aircraft 

for axes transformation is written as: 

𝐹⃗= 𝑚 |
𝑑𝑉𝐶

𝑑𝑡
|
𝐵𝐹

   + m (ω× 𝑉𝐶)                                                                       C.30 

 𝑀⃗⃗⃗ = |
𝑑𝐻̅

𝑑𝑡
|
𝐵𝐹

 + (ω× H)                                                                                 C.31 

Solving the equations 3.26 and 3.27 to deduce force and moment equations in 

scaler form is represented as 

𝑉𝐶 = 𝑢 𝑖̂ + 𝑣 𝑗̂ + 𝑤 𝑘̂                                                                                    C.32 

 𝜔⃗⃗ ⃗⃗  = 𝑝𝑖̂ +𝑞𝑗̂ + 𝑟𝑘̂                                                                                          C.33 

(ω× 𝑉𝐶)  =    [
𝑖̂ 𝑗̂ 𝑘̂
𝑝 𝑞 𝑟
𝑢 𝑣 𝑤

]                                                                             
C.34 

(ω× 𝑉𝐶)  = 𝑖̂[𝑞𝑤 − 𝑟𝑣] − 𝑗̂[𝑝𝑤 − 𝑢𝑟] + 𝑘̂[ 𝑝𝑣 − 𝑞𝑢]                                                 C.35 
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The force equations in X, Y, and Z direction while substituting the value of curl 

(ω× 𝑉𝐶) in  below equations are given by 

𝐹𝑥= 𝑚[𝑢̇ + 𝑞𝑤 − 𝑟𝑣]  C.36 

𝐹𝑦= 𝑚[𝑣̇ + 𝑟𝑢 − 𝑝𝑤] C.37 

𝐹𝑧= 𝑚[𝑤̇ + 𝑝𝑣 − 𝑞𝑢]                                                                                     C.38 

The moment equations in X, Y, and Z direction while substituting the value of 

curl (ω× 𝐻) in equation 3.27 is given by 

 𝜔⃗⃗ ⃗⃗  = 𝑝𝑖̂ +𝑞𝑗̂ + 𝑟𝑘̂                                                                                C.39 

𝐻⃗⃗⃗ =  𝐻𝑥𝑖̂ + 𝐻𝑦𝑗̂ + 𝐻𝑧𝑘̂                                                                       C.40 

(ω× 𝐻)  =    [
𝑖̂ 𝑗̂ 𝑘̂
𝑝 𝑞 𝑟
𝐻𝑥 𝐻𝑦 𝐻𝑧

] 

C.41 

(ω× 𝐻)  =    𝑖̂[𝑞𝐻𝑧 − 𝑟𝐻𝑦] − 𝑗̂[𝑝𝐻𝑧 − 𝑟𝐻𝑥] + 𝑘̂[ 𝑝𝐻𝑦 − 𝑞𝐻𝑥]                            C.42 

Recalling Scaler moment equation 3.24 as discussed in the previous section 

𝐻𝑥= 𝑝𝐼𝑥- 𝑞𝐼𝑥𝑦 - 𝑟 𝐼𝑥𝑧  

𝐻𝑦= 𝑞𝐼𝑦 - 𝑝𝐼𝑥𝑦 - 𝑟𝐼𝑦𝑧 C.43 

𝐻𝑧= 𝑟𝐼𝑧- 𝑞𝐼𝑦𝑧 - 𝑝 𝐼𝑥𝑧  

L = 𝑚[𝐻𝑥̇ + 𝑞𝐻𝑧 − 𝑟𝐻𝑦]   

M = 𝑚[𝐻𝑦̇ + 𝑟𝐻𝑥 − 𝑝𝐻𝑧] C.44 

N = 𝑚[𝐻𝑧̇ + 𝑝𝐻𝑦 − 𝑞𝐻𝑥]                                                                     

Substituting the values of  𝐻𝑥,  𝐻𝑦, 𝐻𝑧 into equation 3.38 to deduce rolling, 

pitching, and yawing moment along the X, Y, and Z axes and assuming the XZ 

plane as the symmetry of the airplane thus   𝐼𝑦𝑧 = 𝐼𝑥𝑦  = 0.                                                         

The moment equation of an airplane in an XZ plane can be written as 

L = 𝐼𝑥𝑝 −̇ 𝐼𝑥𝑧𝑟̇ + 𝑞𝑟(𝐼𝑧 − 𝐼𝑦) − 𝐼𝑥𝑧𝑝𝑞 C.45 

M = 𝐼𝑦𝑞̇ + 𝑟𝑝(𝐼𝑥 − 𝐼𝑧) + 𝐼𝑥𝑧(𝑝
2 − 𝑟2) C.46 

N = -𝐼𝑥𝑧𝑝̇ + 𝐼𝑧𝑟̇ + 𝑝𝑞(𝐼𝑦 − 𝐼𝑥) + 𝐼𝑥𝑧𝑞𝑟                                                     C.47 

Rewriting Force equation by considering Gravitational, and thrust effects on 

Aircraft: 
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Gravitational Force (𝑚𝑔) lies at the center of gravity position of the airplane 

in body fixed axes as shown in fig1. The resolved components are written as: 

                            𝑋𝑏 

                                       𝜃                                   C.G 

                                                                                    

                                                                                                   𝑚𝑔𝑆𝑖𝑛𝜃 

                                                         𝑍𝑏        𝜃        𝑚𝑔 

                                                         𝑚𝑔𝐶𝑜𝑠𝜃 

𝐹𝑥𝑔𝑟𝑎𝑣𝑖𝑡𝑦
= −𝑚𝑔𝑆𝑖𝑛𝜃      C.48 

By comparing both figures 𝐹𝑦𝑔𝑟𝑎𝑣𝑖𝑡𝑦
, 𝐹𝑧𝑔𝑟𝑎𝑣𝑖𝑡𝑦

 can be resolved as shown below 

 

                                                  

                                                              φ 

 

                                                     

                              φ                                        φ          𝑚𝑔𝐶𝑜𝑠𝜃 

 

                   𝑌𝑏                                                                     𝑍𝑏 

Fig C.1: Components of gravitational force in body axis 

𝐹𝑦𝑔𝑟𝑎𝑣𝑖𝑡𝑦
=  𝑚𝑔𝐶𝑜𝑠𝜃𝑆𝑖𝑛𝜑      C.49 

𝐹𝑧𝑔𝑟𝑎𝑣𝑖𝑡𝑦
=  𝑚𝑔𝐶𝑜𝑠𝜃𝐶𝑜𝑠𝜑      C.50 

The thrust forces acting on an airplane in X, Y, and Z directions can be written 

as  
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𝐹𝑋𝑇
= 𝑋𝑇  

𝐹𝑦𝑇
= 𝑌𝑇 C.51 

𝐹𝑍𝑇
= 𝑍𝑇  

The thrust moments acting on an airplane in X, Y, and Z directions can be 

written as 𝐿𝑇 , 𝑀𝑇 , 𝑁𝑇  

The finalized set of force equations is expressed as: 

𝑋 − 𝑚𝑔𝑆𝑖𝑛𝜃= 𝑚[𝑢̇ + 𝑞𝑤 − 𝑟𝑣]      C.52 

𝑌 + 𝑚𝑔𝐶𝑜𝑠𝜃𝑆𝑖𝑛∅ = 𝑚[𝑣̇ + 𝑟𝑢 − 𝑝𝑤] C.53 

𝑍 + 𝑚𝑔𝐶𝑜𝑠𝜃𝐶𝑜𝑠∅= 𝑚[𝑤̇ + 𝑝𝑣 − 𝑞𝑢]                                                                                                         C.54 

Where X, Y, and Z indicate the net forces (Propulsive force, gravitational 

force, thrust force, etc) acting in X, Y, and Z direction  

𝑚𝑢̇ = 𝑚(𝑟𝑣 − 𝑞𝑤) + 𝑞̅𝐶𝑋𝑆 − 𝑚𝑔𝑆𝑖𝑛𝜃 + 𝑇 C.55 

𝑚𝑣̇ = 𝑚(𝑝𝑤 − 𝑟𝑢) + 𝑞̅𝐶𝑌𝑆 + 𝑚𝑔𝐶𝑜𝑠𝜃𝑆𝑖𝑛∅ C.56 

𝑚𝑤̇ = 𝑚(𝑞𝑢 − 𝑝𝑣) + 𝑞̅𝐶𝑍𝑆 + 𝑚𝑔𝐶𝑜𝑠𝜃𝐶𝑜𝑠∅ C.57 
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APPENDIX -D 

GAIN & COORDINATE ESTIMATION 

 

D1. GAIN ESTIMATION OF CONTROLLERS USING TRADITIONAL 

APPROACHES ZN, MZN, AH, TL OF DIFFERENT DATASETS 

D1.1 PID CONTROLLER 

 

KP -PID 

Data Set ZN MZN AH TL 

H0 0.618 0.3399 0.3399 0.3219 

H1 0.42 0.231 0.231 0.2188 

H2 0.804 0.4422 0.4422 0.4188 

H3 0.414 0.2277 0.2277 0.2156 

H4 0.588 0.3234 0.3234 0.3063 

H5 0.468 0.2574 0.2574 0.2438 

H6 0.93 0.5115 0.5115 0.4844 

H7 0.162 0.0891 0.0891 0.0844 

H8 2.58 1.419 1.419 1.3438 

H9 0.72 0.396 0.396 0.375 

H10 1.062 0.5841 0.5841 0.5531 

H11 0.402 0.2211 0.2211 0.2094 

H12 2.58 1.419 1.419 1.3438 

HP1 0.522 0.2871 0.2871 0.2719 

HP2 0.528 0.2904 0.2904 0.275 

HD1 0.18 0.099 0.099 0.0938 

 

 Twelve datasets of Multistep Input, one dataset of Doublet Input, and 2 

dataset of Pulse Input are used for Proportional gain estimation of PID 

Controller using traditional approach such as ZN, MZN, AH and TL 

 

KI-PID 

Dataset ZN MZN AH TL 

H0 0.7774 0.795 1.4946 3.498 

H1 0.4841 0.8675 1.6309 3.817 

H2 1.072 0.752 1.4138 3.3088 
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H3 0.5156 0.803 1.5096 3.5332 

H4 0.7323 0.803 1.5096 3.5332 

H5 0.6671 0.7015 1.3188 3.0866 

H6 1.3248 0.702 1.3198 3.0888 

H7 0.2017 0.803 1.5096 3.5332 

H8 6.45 0.4 0.752 1.76 

H9 0.8933 0.806 1.5153 3.5464 

H10 1.5128 0.702 1.3198 3.0888 

H11 0.4988 0.806 1.5153 3.5464 

H12 4.219 0.6115 1.1496 2.6906 

HP1 0.582 0.8965 1.6854 3.9446 

HP2 0.598 0.883 1.66 3.8852 

HD1 0.1922 0.9365 1.7606 4.1206 

 

Twelve datasets of Multistep Input, one dataset of Doublet Input, and 2 dataset 

of Pulse Input are used for Integral gain estimation of PID Controller using 

traditional approach such as ZN, MZN, AH and TL 

KD-PID 

Dataset ZN MZN AH TL 

H0 0.1228 0.5247 0 0.2523 

H1 0.0911 0.5726 0 0.2753 

H2 0.1508 0.4963 0 0.2387 

H3 0.0831 0.53 0 0.2549 

H4 0.118 0.53 0 0.2549 

H5 0.0821 0.463 0 0.2227 

H6 0.1632 0.4633 0 0.2228 

H7 0.0325 0.53 0 0.2549 

H8 0.258 0.264 0 0.127 

H9 0.1451 0.532 0 0.2558 

H10 0.1864 0.4633 0 0.2228 

H11 0.081 0.532 0 0.2558 

H12 0.3944 0.4036 0 0.1941 

HP1 0.117 0.5917 0 0.2845 

HP2 0.1166 0.5828 0 0.2803 

HD1 0.0421 0.6181 0 0.2972 
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Twelve datasets of Multistep Input, one dataset of Doublet Input, and 2 dataset 

of Pulse Input are used for Integral gain estimation of PID Controller using 

traditional approach such as ZN, MZN, AH and TL 

 

 

D1.2 PI CONTROLLER 

 

 

Twelve datasets of Multistep Input, one dataset of Doublet Input, and 2 dataset 

of Pulse Input are used for Proportional gain estimation of PI Controller using 

traditional approach such as ZN, MZN, AH and TL 

KI-PI 

Dataset ZN TL 

H0 0.3512 3.498 

H1 0.2187 3.817 

H2 0.4843 3.3088 

H3 0.2329 3.5332 

H4 0.3308 3.5332 

H5 0.3014 3.0866 

H6 0.5985 3.0888 

KP-PI  

Dataset ZN TL 

H0 0.4635 0.3219 

H1 0.315 0.2188 

H2 0.603 0.4188 

H3 0.3105 0.2156 

H4 0.441 0.3063 

H5 0.351 0.2438 

H6 0.6975 0.4844 

H7 0.1215 0.0844 

H8 1.935 1.3438 

H9 0.54 0.375 

H10 0.7965 0.5531 

H11 0.3015 0.2094 

H12 1.935 1.3438 

HP1 0.315 0.2719 

HP2 0.396 0.275 

HD1 0.135 0.0938 
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H7 0.0911 3.5332 

H8 2.9138 1.76 

H9 0.4035 3.5464 

H10 0.6834 3.0888 

H11 0.2253 3.5464 

H12 1.906 2.6906 

HP1 0.263 3.9446 

HP2 0.2701 3.8852 

HD1 0.0868 4.1206 

 

Twelve datasets of Multistep Input, one dataset of Doublet Input, and 2 dataset 

of Pulse Input are used for Integral gain estimation of PI Controller using 

traditional approach such as ZN, MZN, AH and TL 

 

D1.3 PD CONTROLLER 

PD using ZN Tuning 

Dataset Kp Kd 

H0 0.824 0.1638 

H1 0.56 0.1214 

H2 1.072 0.201 

H3 0.552 0.1108 

H4 0.784 0.1574 

H5 0.624 0.1094 

H6 1.24 0.2176 

H7 0.216 0.0434 

H8 3.44 0.344 

H9 0.96 0.1934 

H10 1.416 0.2485 

H11 0.536 0.108 

H12 3.44 0.5259 

HP1 0.696 0.156 

HP2 0.704 0.1554 

HD1 0.24 0.0562 

 

Twelve datasets of Multistep Input, one dataset of Doublet Input, and 2 dataset 

of Pulse Input are used for Proportional, Integral gain estimation of PD 

Controller using traditional approach such as ZN 
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D2. MULTI-STEP 3211 INPUT DATASETS (H0-H12) 

 

 

Fig D.1 Comparison of Proportional gain value of Multi-step datasets using 

Tuning approaches such as: ZN, MZN, TL, and AH 

Proportional gain value of twelve datasets of multistep Input form using PID 

tuning approaches are compared and observed H7 dataset has highest gain value 

while using ZN Technique. Moreover, gain values of all datasets using various 

tuning methods superimposes each other 

 

Fig D.2 Comparison of Integral gain value of Multi-step datasets using Tuning 

approaches such as: ZN, MZN, TL, and AH 
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Integral gain value of twelve datasets of multistep Input form using PID tuning 

approaches are compared and observed H7 and H9 dataset has highest gain 

value while using ZN Technique. Moreover, gain values of all datasets using 

various tuning methods superimposes each other. 

 

 

Fig D.3 Comparison of Derivative gain value of Multi-step datasets using 

Tuning approaches such as: ZN, MZN, TL, and AH 

 

Derivative gain value of twelve datasets of multistep Input form using PID 

tuning approaches are compared and observed H1 dataset has highest gain value 

while using MZN Technique 
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Fig D.4 Comparison of Proportional gain value of Pulse Input 

datasets using Tuning approaches such as: ZN, MZN, TL, and AH 

 

 

Fig D.5 Comparison of Integral gain value of Pulse Input datasets 

using Tuning approaches such as: ZN, MZN, TL, and AH 
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Fig D.6 Comparison of Derivative gain value of Pulse Input 

datasets using Tuning approaches such as: ZN, MZN, TL, and AH 

 

Proportional, Derivative and Integral gain value of two datasets of Pulse Input 

form using PID tuning approaches are compared in above figure (D.4-6) 

 

DOUBLET INPUT DATASETS (HD1) 

 

 

 
 

Fig D.7 Comparison of Proportional gain value of Doublet Input datasets 

using Tuning approaches such as: ZN, MZN, TL, and AH 
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Fig D.8 Comparison of Integral gain value of Doublet Input datasets using 

Tuning approaches such as: ZN, MZN, TL, and AH 

 

 

Fig D.9 Comparison of Derivative gain value of Doublet Input datasets 

using Tuning approaches such as: ZN, MZN, TL, and AH 

 

 

Proportional, Derivative and Integral gain value of one datasets of Pulse Input- 

form using PID tuning approaches are compared in above figure (D.7-9) 
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COMPARE MULTI STEP, DOUBLET, AND PULSE INPUT 

DATASETS OF PID CONTROLLER 

 

 

 

Fig D.10 Comparison of Proportional gain value of Multi-step, Doublet, 

and Pulse input datasets using Tuning approaches such as: ZN, MZN, TL, 

and AH 
 

 

 

Fig D.11 Comparison of Integral gain value of Multi-step, Doublet, and 

Pulse input datasets using Tuning approaches such as: ZN, MZN, TL, and 

AH 
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Fig D.12 Comparison of Derivative gain value of Multi-step, Doublet, and 

Pulse input datasets using Tuning approaches such as: ZN, MZN, TL, and AH 

 

COMPARE MULTI STEP, DOUBLET, AND PULSE INPUT 

DATASETS OF PD CONTROLLER 

 

 

 

Fig D.13 Comparison of Proportional gain value of Multi-step, Doublet, and 

Pulse input datasets of PD Controller using Tuning approaches such as: ZN, 

and TL 
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Fig D.14 Comparison of Integral gain value of Multi-step, Doublet, and Pulse 

input datasets of PD Controller using Tuning approaches such as: ZN, and TL 

 

COMPARE MULTI STEP, DOUBLET, AND PULSE INPUT 

DATASETS OF PD CONTROLLER 

 

Fig D.15 Comparison of Proportional Integral gain value of Multi-step, 

Doublet, and Pulse input datasets of PD Controller 
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ZIEGLER NICHOLAS FIGURES OF MULTI-STEP, DOUBLET, AND PULSE 

INPUT 

 

 

  DATA SET H0                                      DATA SET H1 

 

  DATA SET H2                                        DATA SET H4 

 

 DATA SET H5                                      DATA SET H6 

 

 

 



211 
 

 

DATA SET H7                                        DATA SET H8 

 

   DATA SET H9                                        DATA SET H10 

 

                        DATA SET H11                                      DATA SET H12 

 

Fig D.16 Step response of Multi-step Input Dataset H0-H12 using Ziegler 

Nicholas tuning technique 
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DOUBLET INPUT 

 

DATA SET D1 

 

PULSE INPUT 

 

    DATA SET HP1                                      DATA SET HP2 

 

Fig D.17 Step response of Doublet, and Pulse Input Dataset D1, HP1, and HP2 

using Ziegler Nicholas tuning technique 

Various datasets are used for gain optimization to design controller using PID 

tuning Approach. In this figure, X axes denotes time(sec) and Y axes as 

amplitude. The step response shows oscillatory behaviour of input form which 

gets damped after short interval. Dataset H12 shows optimal response among 

all datasets.  
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MODIFIED ZIEGLER NICHOLAS FIGURES OF MULTI-STEP, DOUBLET, 

AND PULSE INPUT 

 

DATA SET H0                                    DATA SET H1 

 

DATA SET H2                                     DATA SET H4 

 

DATA SET H5                                     DATA SET H6 
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DATA SET H7                                      DATA SET H8 

 

 DATA SET H9                                       DATA SET H1 

 

    DATA SET H11                                     DATA SET H12 

Fig D.18 Step response of Multi-step Input Dataset H0-H12 using Modified 

Ziegler Nicholas tuning technique 
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DOUBLET INPUT 

 

DATA SET HD1 

 

PULSE INPUT 

 

    DATA SET HP1                                     DATA SET HP2 

Fig D.19 Step response of Multi-step Input Dataset H0-H12 using Modified 

Ziegler Nicholas tuning technique 

 

Various datasets are used for gain optimization to design controller using PID 

tuning Approach. In this figure, X axes denotes time(sec) and Y axes as 

amplitude. The step response shows oscillatory behaviour of input form which 

gets damped after short interval. Dataset H5 shows optimal response among all 

datasets as meeting all control system design requirements 
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TYREUS-LUYBEN FIGURES OF MULTI-STEP, DOUBLET, AND PULSE 

INPUT 

 

DATA SET H0                                      DATA SET H1 

 

 DATA SET H2                                      DATA SET H4 

 

  DATA SET H5                                        DATA SET H6 
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DATA SET H7                                       DATA SET H8 

 

DATA SET H9                                      DATA SET H10 

 

DATA SET H11                                     DATA SET H12 

Fig D.20 Step response of Multi-step Input Dataset H0-H12 using Tyreus-

Luyben tuning technique 
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DOUBLET INPUT 

 

DATA SET HD1 

 

PULSE INPUT 

 

DATA SET HP1                                   DATA SET HP2 

 

Fig D.21 Step response of Doublet, Pulse Input Dataset HD1, HP1, and HP2 

using Tyreus-Luyben tuning technique 

Various datasets are used for gain optimization to design controller using PID 

tuning Approach. In this figure, X axes denotes time(sec) and Y axes as 

amplitude. The amplitude of the step response shows oscillatory behaviour of 

input form which gets damped after short interval. Dataset H12 shows optimal 

response among all datasets whereas amplitude goes on increasing with respect 

to time of doublet and pulse input dataset 
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ASTROM-HAGGLUND FIGURES OF MULTI-STEP, DOUBLET, AND 

PULSE INPUT 

 

DATA SET H0                                        DATA SET H1 

 

DATA SET H2                                       DATA SET H4 

 

DATA SET H5                                       DATA SET H6 

 

 

 

 



220 
 

 

DATA SET H7                                      DATA SET H8 

 

DATA SET H9                                     DATA SET H10 

 

DATA SET H11                                  DATA SET H12 

 

Fig D.22 Step response of Multi-step Input Dataset H0-H12 using Astrum- 

Hagglund tuning technique 
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DOUBLET INPUT 

 

DATA SET HD1 

 

PULSE INPUT 

 

DATA SET HP1                                   DATA SET HP2 

 

Fig D.23 Step response of Doublet, Pulse Input Dataset HD1, HP1, and HP2 

using Astrum- Hagglund tuning technique 

Various datasets are used for gain optimization to design controller using PID 

tuning Approach. In this figure, X axes denotes time(sec) and Y axes as 

amplitude. The amplitude of the step response shows oscillatory behaviour of 

input form which gets damped after short interval. Dataset H12 shows optimal 

response among all datasets whereas amplitude goes on increasing with respect 

to time of doublet and pulse input data 
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ZIEGLER NICHOLAS FIGURES OF MULTI STEP, DOUBLET, AND 

PULSE INPUT DATASETS OF PI CONTROLLER 

MULTISTEP INPUT 

 

DATA SET H0                                       DATA SET H1 

 

DATA SET H2                                       DATA SET H4 

 

DATA SET H5                                       DATA SET H6 
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DATA SET H7                                        DATA SET H8 

 

DATA SET H9                                     DATA SET H10 

 

DATA SET H11                                    DATA SET H12 

Fig D.24 Step response of Multi-step Input Dataset H0-H12 using Ziegler 

Nicholas tuning technique of PI Controller 
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DOUBLET INPUT 

 

DATA SET HD1 

 

PULSE INPUT 

 

DATA SET HP1                                  DATA SET HP2 

 

Fig D.25 Step response of Doublet, Pulse Input Dataset HD1, HP1, and HP2 

using Astrum- Hagglund tuning technique 

 

Various datasets are used for gain optimization to design controller using PI 

tuning Approach. In this figure, X axes denotes time(sec) and Y axes as 

amplitude. The amplitude of the step response shows oscillatory behaviour of 

input form which gets damped after short interval. Dataset H12 shows optimal 

response among all datasets  
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TYREUS-LUYBEN FIGURES OF MULTI STEP, DOUBLET, AND 

PULSE INPUT DATASETS OF PI CONTROLLER                               

 

MULTI STEP INPUT 

 

DATA SET H0                                     DATA SET H1 

 

DATA SET H2                                      DATA SET H4 

 

DATA SET H5                                     DATA SET H6 
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DATA SET H7                                     DATA SET H8 

 

DATA SET H9                                     DATA SET H10 

 

DATA SET H11                                   DATA SET H12 

Fig D.26 Step response of Multi-step Input Dataset H0-H12 using Tyreus-

Luyben tuning technique of PI Controller 
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DOUBLET INPUT 

 

DATA SET HD1 

 

PULSE INPUT 

 

DATA SET HP1                                 DATA SET HP2 

 

Fig D.27 Step response of Doublet, Pulse Input Dataset HD1, HP1, and HP2 

using Astrum- Hagglund tuning technique 

 

Various datasets are used for gain optimization to design controller using PI 

tuning Approach. In this figure, X axes denotes time(sec) and Y axes as 

amplitude. The amplitude of the step response shows oscillatory behaviour of 

input form which gets damped after short interval. Dataset H8 shows optimal 

response among all datasets. Moreover, all other datasets have ever increasing 

amplitude. 
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ZIEGLER NICHOLAS FIGURES OF MULTI STEP, DOUBLET, AND 

PULSE INPUT DATASETS OF PD CONTROLLER 

 

MULTISTEP INPUT 

 

 

DATA SET H0                                      DATA SET H1 

 

DATA SET H2                                      DATA SET H4 

 

DATA SET H5                                      DATA SET H6 
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DATA SET H7                                     DATA SET H8 

 

DATA SET H9                                    DATA SET H10 

 

DATA SET H11                                  DATA SET H12 

Fig D.28 Step response of Multi-step Input Dataset H0-H12 using Ziegler 

Nicholas tuning technique of PD Controller 
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DOUBLET INPUT 

 

DATA SET D1 

 

PULSE INPUT                                   

 

DATA SET P1                                       DATA SET P2 

Fig D.29 Step response of Doublet, Pulse Input Dataset D1, P1, and P2 using 

Ziegler Nicholas tuning technique 

 

Various datasets are used for gain optimization to design controller using PD 

tuning Approach. In this figure, X axes denotes time(sec) and Y axes as 

amplitude. The amplitude of the step response shows oscillatory behaviour of 

input form which gets damped after short interval.  
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D3. ESTIMATION OF CARTESIAN COORDINATES USING FLIGHT 

DATA 

 

Δt ax az vx(k-1) vx(k) vz(k-1) vz(k) X(K-1) Z(K-1) Altitude( Y) X(k) Z(K) 
0.02 2.474977 3.31304 36.5718 36.6213 26.682 26.74826 0 0 30540.65268 0.732426 0.534965 
0.02 2.443499 3.326073 36.6213 36.67017 26.74826 26.81478 0.732426 0.534965 30540.65591 1.465829 1.071261 
0.02 2.430449 3.315653 36.67017 36.71878 26.81478 26.8811 1.465829 1.071261 30540.65915 2.200205 1.608883 
0.02 2.460625 3.335148 36.71878 36.76799 26.8811 26.9478 2.200205 1.608883 30540.66239 2.935565 2.147839 
0.02 2.474912 3.320663 36.76799 36.81749 26.9478 27.01421 2.935565 2.147839 30540.66563 3.671915 2.688123 
0.02 2.443434 3.312962 36.81749 36.86636 27.01421 27.08047 3.671915 2.688123 30540.66886 4.409242 3.229732 
0.02 2.430385 3.318601 36.86636 36.91497 27.08047 27.14684 4.409242 3.229732 30540.6721 5.147541 3.772669 
0.02 2.46056 3.302547 36.91497 36.96418 27.14684 27.21289 5.147541 3.772669 30540.67534 5.886825 4.316927 
0.02 2.474847 3.337831 36.96418 37.01367 27.21289 27.27965 5.886825 4.316927 30540.67858 6.627098 4.86252 
0.02 2.44337 3.311102 37.01367 37.06254 27.27965 27.34587 6.627098 4.86252 30540.68182 7.368349 5.409438 
0.02 2.43032 3.305892 37.06254 37.11115 27.34587 27.41199 7.368349 5.409438 30540.68505 8.110572 5.957677 
0.02 2.460496 3.310376 37.11115 37.16036 27.41199 27.4782 8.110572 5.957677 30540.68829 8.853779 6.507241 
0.02 2.474782 3.31665 37.16036 37.20985 27.4782 27.54453 8.853779 6.507241 30540.69153 9.597976 7.058132 
0.02 2.443305 3.317889 37.20985 37.25872 27.54453 27.61089 9.597976 7.058132 30540.69477 10.34315 7.61035 
0.02 2.430255 3.298646 37.25872 37.30732 27.61089 27.67686 10.34315 7.61035 30540.698 11.0893 8.163887 
0.02 2.460431 3.299971 37.30732 37.35653 27.67686 27.74286 11.0893 8.163887 30540.70124 11.83643 8.718744 
0.02 2.474717 3.294893 37.35653 37.40603 27.74286 27.80876 11.83643 8.718744 30540.70448 12.58455 9.274919 
0.02 2.44324 3.316298 37.40603 37.45489 27.80876 27.87508 12.58455 9.274919 30540.70772 13.33365 9.832421 
0.02 2.43019 3.286346 37.45489 37.5035 27.87508 27.94081 13.33365 9.832421 30540.71095 14.08372 10.39124 
0.02 2.460366 3.301883 37.5035 37.5527 27.94081 28.00685 14.08372 10.39124 30540.71419 14.83477 10.95137 
0.02 2.474653 3.285324 37.5527 37.6022 28.00685 28.07256 14.83477 10.95137 30540.71743 15.58681 11.51283 
0.02 2.443175 3.289663 37.6022 37.65106 28.07256 28.13835 15.58681 11.51283 30540.72067 16.33984 12.07559 

 

Table D.3 Cartesian Coordinates Estimation Using Flight Data 
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