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ABSTRACT 

 

Almost every physical system is nonlinear in nature. These systems are inherently 

uncertain, unstable, and complex. Nonlinear systems are always challenging to 

control because of the properties like No superposition and homogeneity, Chaotic 

behavior, Multiple equilibrium states, and Input sensitivity.  Several methods are 

employed for analyzing and controlling such types of systems. Control of these 

systems is always a fascinating area for researchers. Robotic manipulators are an 

example of such a system that has highly nonlinear, uncertain, and unstable 

dynamics.  

With technological advancement, robotic manipulators have gained much 

popularity in industrial as well as medical applications. These applications include 

pick and place, material handling, assembling, welding, teleoperations, haptic 

interfaces, prosthetic limbs, and many more.  Taking into consideration the non-

linear characteristics and complexity of robotic manipulators, effective and 

optimized control is essentially required. Because of these non-linear 

characteristics, it is difficult to approximate the systems aimed to enhance 

efficiency. Conventional approaches like optimal control, a nonlinear sliding mode 

control (SMC), robust and adaptive control, the three-term proportional-integral-

derivative (PID), and fractional order PID (FOPID) are popular control methods 

but need the exact modeling of the system. Intelligent control methods imbibe 

artificial intelligence methods in conventional control methods to increase their 

performance and effectiveness.  

The trajectory tracking of a robotic manipulator has been presented in this work 

using numerous methods. First, a robust adaptive sliding mode control then PID 

and FOPID-based controllers have been implemented to track the reference 

trajectory. Furthermore, four different metaheuristic algorithms namely grey wolf 

optimization algorithm (GWO), whale optimization algorithm (WOA), moth flame 

optimization (MFO), and multiverse optimization (MVO) have been implemented 
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for the trajectory control of a two-link linearized robotic manipulator. Afterward, 

the trajectory tracking has been achieved using other four recent metaheuristic 

algorithms namely the arithmetic optimization algorithm (AOA), atom search 

optimization (ASO), spotted hyena optimizer (SHO), and sooty tern optimization 

(STO). These optimization techniques have considered the weighted sum of IAE 

and ITAE as a performance index having the error between the reference and actual 

trajectory as the fitness value.  

All these metaheuristic algorithms are stochastic in nature; therefore, a statistical 

analysis has been performed by running each algorithm 10 times. In order to access 

their performance a parametric statistical Friedman’s ANOVA test has been 

performed and a Friedman ranking has been assigned to each of the algorithms. For 

the linearized model, the MFO outperforms the others while for the nonlinear 

model, the STO outperforms the other algorithms. MFO and STO attain the first 

rank in this test for linear and nonlinear models respectively.  

Further, a novel metaheuristics algorithm hybrid of the particle swarm optimization 

(PSO) and sooty tern optimization (STOPSO) has been proposed for the 

optimization of the controllers for trajectory tracking of the robotic manipulators. 

The inclusion of the PSO's exploitation capability with adjustable weight in 

sequential mode enhances the STO's exploitation capability greatly in the 

proposed STOPSO algorithm. As a result, the proposed algorithm is converging 

equally well to the true values with minimum error. The proposed STOPSO 

performs better in comparison to STO and other implemented algorithms. In 

addition to this, the performance of the proposed STOPSO algorithm is measured 

based on convergence analysis, robustness, reliability, and statistical analysis for 

trajectory control and compared with the previous algorithms existing in the 

literature. In trajectory control of robotic manipulators, some applications require 

tracking of the optimum point in the defined trajectory, for such applications an 

extremum-seeking control has been designed. The perturbation type extremum 

seeking control attains the optimum value of the trajectory with the help of designed 

control laws.  
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Chapter 1 

 

Introduction 

 

1.1 Introduction to nonlinear systems 

Nonlinear systems are systems that do not have a proportional relationship 

between the inputs and outputs, and thus cannot be described by linear 

equations.  Nonlinear systems have specific properties like no superposition and 

homogeneity, chaotic behavior, multiple equilibrium states, input sensitivity, 

state dependence, and multivariable interactions that distinguish them from 

linear systems and impact the design and implementation of control algorithms. 

Nonlinear systems have unpredictable dynamics that make it difficult to achieve 

the desired performance.   

Nonlinear control systems can exhibit local stability; the system may be stable 

for some initial conditions but unstable for others. The challenging nature of the 

nonlinear dynamical systems makes designing and implementing control 

algorithms for nonlinear control systems complex. Therefore, specialized 

techniques and algorithms are often required to achieve the desired 

performance. Researchers have implemented various control techniques such as 

optimal, adaptive, robust, sliding mode, model predictive control (MPC), and 

other nonlinear control techniques. 

A nonlinear system is expressed in the standard form as follows. 

                                        𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢      𝑦 = ℎ(𝑥)                             (1.1) 

 𝑓, 𝑔, ℎ  are nonlinear functions.  

Another representation of the nonlinear system is expressed in eq (1.2) 

                                        𝑥̇ = 𝑓(𝑥, 𝑢)      𝑦 = ℎ(𝑥)                                        (1.2)  

where 𝑥   is the state vector, 𝑢 is the input vector, and 𝑓 is the nonlinear function 

describing the relationship between the state and input vectors. 𝑦 is the output 

vector and ℎ is a nonlinear function that relates the state and output vectors. 

These nonlinear functions are highly complex and difficult to analyze thus, the 

development and analysis of nonlinear control systems require advanced 
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mathematical skills and a deep understanding of control theory. The aim of 

nonlinear control is to make the system stable and maintain the desired 

behaviour in the presence of nonlinearities. Applications of nonlinear control 

can be found in various fields such as robotics, aerospace, electrical power 

systems, and chemical process control. One such robotic system, a two-link 

robotic manipulator has been considered for trajectory tracking problem in this 

thesis.  

 

1.2 Control of nonlinear systems 
 

Nonlinear systems are very difficult to control and almost every physical system 

is nonlinear in nature. These systems are inherently uncertain, unstable, and 

complex. The properties like no superposition and homogeneity, Chaotic 

behavior, Multiple equilibrium states, and Input sensitivity makes nonlinear 

systems challenging to control [1]. Several methods have been employed by the 

researchers for the analysis and control of such type of systems. Control of these 

systems is always an area of interest for researchers. Researchers have been 

developing new methods for controlling such nonlinear systems. The advent 

and popularity of artificial intelligence has provided a great amount of 

autonomy and innovations in the control of nonlinear systems.   

Robotic manipulators are an example of such a system that has highly nonlinear, 

uncertain, and unstable dynamics [2]. With technological advancement, robotic 

manipulators have gained much popularity in industrial as well as medical 

applications. These applications are pick and place, material handling, 

assembling, welding, teleoperations, haptic interfaces, prosthetic limbs, and 

many more. Taking into consideration the non-linear characteristics and 

complexity of robotic manipulators, effective and optimized control is 

essentially required. Various methods like PID [3], sliding mode control [3], 

FOPID [4-5], and robust adaptive control [6-7] have been implemented to solve 

the problems of robotic systems. The technological advancements in the field 

of artificial intelligent techniques like artificial neural networks (ANN), fuzzy 

logic, and metaheuristic algorithms have imparted better capabilities in such 

systems. Researchers have implemented these techniques on robotic systems 

and are termed as intelligent control schemes [8].  
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1.3 Robotic Manipulators 
 

Robotic manipulators are inherently complicated, nonlinear systems. As 

these systems are widely used in industry, efficient control of robotic 

manipulators becomes crucial. A robotic manipulator’s dynamics refer to how 

it moves and responds to external forces and torques and can be described 

mathematically using the principles of classical mechanics. The robotic 

manipulator’s equations of motion typically involve the displacements, 

velocities, and accelerations of the links and joints, as well as the external forces 

and torques acting on the system. The dynamics of a robotic manipulator are 

affected by several factors, such as the mass and geometry of the links, the type 

and configuration of the joints, the friction and damping in the joints, and the 

control algorithms used to operate the system. One important concept is the 

inverse dynamics problem, which involves determining the joint torques 

required to produce a desired end effector motion. This problem is solved by 

first calculating the gravitational, centrifugal, and Coriolis forces acting on the 

system, and then using these forces to calculate the required joint torques. 

Understanding the dynamics of a robotic manipulator is essential for designing, 

controlling, and optimizing robotic systems in a wide range of applications. 

These robotic manipulators comprise actuated end-effectors, links, and 

joints. The links' joints are exposed to torques, and the locations of the links are 

tracked. It is difficult to predict the dynamics of such systems because of their 

inherent nonlinearities and uncertainty. To determine the dynamic of robotic 

manipulator systems, the Euler-Lagrange system is employed. This Lagrangian 

function takes the links' potential and kinetic energy into account [2]. 

Lagrangian equations of motion are used to this function to derive the dynamics 

of the system. Robotic manipulators are used in a wide range of sectors, such as 

process engineering in the chemical, oil & gas, space technology, and medical 

sciences [5]. These manipulators perform the tasks with higher speed and 

accuracy. Therefore, effective control of system output variables such as 

position and velocity are of the utmost required. A basic mechanical structure 

having single degree of freedom (DoF) and one link only [9] has been used 
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frequently for analyzing and implementing control algorithms [4]. With the 

increase in robotic technology, the structure with two or more DoF is used for 

the aforementioned purpose, they are multi-link robotic manipulators generally 

have two links or three links. In general, robotic manipulators fall into the 

categories of single-link, two-link, and three-link manipulators. Multilink 

robotic manipulators are manipulators with more than one link and have more 

than one degree of freedom. Each link has mass and angular displacement. The 

dynamic equations for a robotic manipulator have been presented in the next 

chapter. 

 

1.4 Motivation of the work 
 

Control and optimization of nonlinear systems are always challenging areas for 

researchers. Researchers are controlling these systems using various control 

methods like PID, robust, adaptive, and Sliding mode control. Such methods 

require precise knowledge of the system’s dynamics. This introduces certain 

complexity because of nonlinearities in the system. Conventional controllers 

give improved performance when intelligent techniques or intelligent methods 

are assimilated with them. These intelligent control techniques are capable of 

inducing some decision-making capability that leads to improved performance 

of robotic systems. Metaheuristic algorithms have gained much popularity with 

the growth of artificial intelligence, this fascinates researchers to implement 

these techniques to find the optimal solutions. The use of such metaheuristic 

algorithms helps to obtain the optimal parameters of the control schemes. Thus, 

with the employment of intelligent control methods, the system will be able to 

perform its task efficiently with increased capability and payload capacities.  

1.5 Objectives 

 

The key objectives of this thesis work are:  

 

1. Mathematical modeling and stability analysis of robotic manipulator. 

2. Comparison and analysis of intelligent control techniques.  

3. Optimization of the robotic manipulator using metaheuristic algorithms. 
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1.6 Thesis Organization 
 

The completed research work is compiled in the following subsequent chapters: 

 

1.6.1 Chapter 2: Literature Review 

 

Previous research work focused on every aspect of controlling robotic 

manipulators using intelligent control methods has been presented in this 

chapter. It also consists of theoretical and realistic implications of these control 

methods on the trajectory control of robotic manipulators. In order to compile 

information on the earlier research carried out on trajectory control of 

manipulators, a comprehensive literature survey is conducted along with its 

complete architecture.  Metaheuristic algorithms have gained popularity among 

researchers to solve complex problems. Implementation of these algorithms on 

robotic systems has been presented in this chapter. In addition to this analysis, 

the key features, advantages, and disadvantages have been presented in this 

chapter. 

 

1.6.2 Chapter 3: Analysis of control strategies for robotic manipulator 
 

In this chapter, the control strategies implemented for trajectory tracking have 

been presented. The methods like PID, FOPID, Robust, and Adaptive control 

with their architecture and mathematical formulation have been discussed.  

 

1.6.3 Chapter 4: Optimization and statistical analysis of control 

techniques for linearized model 

 

In this chapter, the control techniques PID and FOPID have been designed using 

the metaheuristic algorithms GWO, WOA, MFO, and MVO for a linear model 

of a two-link robotic manipulator. Also, the mathematical formulation of these 

algorithms has been presented. These algorithms have been used to find the 

optimal gains of the controller. The effectiveness of these algorithms has been 

evaluated by performing a statistical analysis. 
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1.6.4 Chapter 5: Optimization and statistical analysis of control 

techniques for nonlinear model 

 

In this chapter, the control techniques PID has been designed using the recent 

metaheuristic algorithms ASO, AOA, SHO, and STO for a nonlinear model of 

a two-link robotic manipulator. Also the mathematical formulation of these 

algorithms has been presented. These algorithms have been used to find the 

optimal gains of the controller. The effectiveness of these algorithms has been 

evaluated by performing a statistical analysis. A novel hybrid algorithm 

STOPSO has been designed and presented in this chapter.  

 

1.6.5 Chapter 6: Conclusion and Future Work 
 

In this chapter the outcomes of the research work are concluded and presented 

along with its future aspects. 
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Chapter 2 

 

Literature review 

2.1 Introduction 
 

The design of robotic manipulators and their control have drastically changed 

as a result of robotics technological innovations. Almost every industry 

including Electrical, mechanical, process, and medical use manipulators to 

reduce labor costs and increase accuracy. Effective controlling of manipulators 

is challenging because of their inherent complex dynamics, uncertain behavior, 

and nonlinearities. Researchers are developing many ways to implement 

effective control strategies using classical, modern, and intelligent techniques.  

 

To perform the tasks, robotic manipulators interact with the real environment in 

all intended applications. Therefore, the requirement of understanding the 

input–output relations arise, Thus, there is a requirement for intelligent control 

techniques. The control of robotic manipulators has been greatly impacted by 

the revolutionary rise in artificial intelligence. In this chapter, various intelligent 

control strategies used in robotic manipulator systems are thoroughly reviewed. 

The intelligent control methods include ANN, FLC, expert systems, 

metaheuristic algorithm, and machine learning control (MLC).  

The ability to emulate human intelligence makes these intelligent control 

methods popular for controlling robotic systems. Conventional control methods 

like PID SMC, robust, adaptive optimal, and FOPID have been implemented in 

robotic systems to achieve the control objectives. These intelligent control 

methods improve control performance when integrated with conventional 

methods under performance constraints.  
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2.2  Intelligent Control Methods 

Intelligent control refers to the implementation of AI techniques such as fuzzy 

logic, neural networks, machine learning, and optimization algorithms in 

control strategies to attain the desired performance of physical systems [13]. 

The system acquires certain characteristics like learning capacity, memory, and 

the ability to handle unidentified or unanticipated conditions. This control 

makes decisions based on approximation theory, which estimates any 

circumstance or representation. Intelligent control techniques have been proven 

effective in complex systems [8]. 

 

 

 

 

 

 

                                         

Figure 2.1 Intelligent Control Methods 

Thus intelligent control is the use of AI techniques to achieve the control 

objectives by improving the performance of the system. These methods include 

FLC, expert systems, ANNs, deep learning, machine MLC, and metaheuristic 

algorithms for optimization, and are known as soft computing methods. The 

implementation of such methods in robotic systems provides the ability to 

achieve the intended objective effectively. Figure 2.1 presents the intelligent 

control methods used for the controlling the robotic systems. ANNs are inspired 

by the human brain neurons and inculcate the learning ability, FLC implements 

the fuzzy theory-based control, and the metaheuristic optimization techniques 

help to obtain the optimum solutions for the control law and the system’s 

parameters.  
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Expert control is software-based programs that integrate the system with an 

inference mechanism to achieve the desired control output.  Researchers have 

been implementing each of these techniques extensively to control the robotic 

manipulators for problems like trajectory tracking and path planning. Each of 

these technologies significantly impacts the performance of the robotic systems.  

All these methods have been discussed and reviewed in the subsequent 

subsections. 

2.2.1 Artificial Neural Networks 

ANN gives the biological intelligence of neurons to the systems. Input, hidden, 

and output layers are the three distinct layers that constitute the framework of 

the ANNs. Based on data relating to manipulators, these neural networks train 

the variable or parameters. Neural networks have various configurations, like 

feed-forward, feedforward neural networks based on backpropagation, and 

recurrent neural networks [14]. Feedforward neural networks- This network 

does not have any feedback mechanism or loop.  Backpropagation based 

feedforward neural networks– in this type, a sigmoid function is used as an 

activation function. This may have multiple hidden layers. Radial basis 

feedforward neural networks based on backpropagation- It merely includes one 

hidden layer and a radial basis function, which is the activation function.  

Recurrent Neural Networks are another popular networks- The learning of 

neurons is necessary for this neural network-based control mechanism; input-

output mapping handles the learning and makes feedback available in a loop. 

Because of feedback availability, it shows the related information in a bi-

directional way. This network frequently serves the purpose of 

controlling robotic manipulators. Neural networks are often utilised to control 

robotic manipulators due to their nonlinear and complicated dynamics [15]. 
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                       Figure 2.2 Architecture of artificial neural networks  

 

 

 

 

Figure 2.3 Architecture of ANN based control methods 

 

Figure 2.2 and Figure 2.3 presents the architecture of neural networks and the 

control schemes based on such networks. Bin Jin [16] demonstrated a neural 

network-based backpropagation and calculated torque control. Prior knowledge 

was included into the control design, resulting in error convergence and quick 

and effective control. In [17], the authors presented chaotic neural networks 

based direct adaptive control of robotic systems with three axes. Since chaotic 

neural networks feature internal feedback loops inside their layers, they have a 

substantial influence on the dynamics of robotic manipulators. The proposed 

neural network uses a PD controller and a backpropagation method as a learning 

technique. Improvement in performance over recurrent neural networks is 

shown through simulation findings. SMC is a nonlinear control method used for 

the controlling a robotic manipulator system. In [18], the authors designed a 
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SMC for a robotic manipulator utilizing ANN for trajectory control issues. The 

system's uncertainties are addressed by a three-layer neural network. The 

suggested controller is stable, as demonstrated by Lyapunov's theorem. The 

proposed controller's robustness is verified by simulation, although it has a 

chattering effect. In [19], the authors proposed a neural network-based SMC 

with a chatter-free response for a robotic manipulator system. The nonlinearities 

and uncertainties in the system under consideration are approximated by an 

RBF neural network. Hence, it is a neural network-based SMC having chattered 

free response. The convergence of the position tracking error is demonstrated 

using the Lyapunov stability theorem. Robotic manipulators' nonlinear and 

unpredictable dynamics have been well suited to SMC. It responds more quickly 

and can effectively manage the innate uncertainties. When learning and 

estimating uncertainty in manipulators, neural networks perform effectively. 

The authors in [20], proposed a unique SMC for robotic manipulators 

employing neural networks, with the weights being set by a fuzzy supervisory 

controller. Combining all these techniques, it is known as fuzzy supervisory 

sliding mode neural network control (FSSMNNC). The Lyapunov approach 

validates the developed controller's steady response and error convergence. 

The authors of [21] described a neural network-based adaptive controller for 

trajectory control of a robotic manipulator that uses a proportional derivative 

(PD) controller. The suggested controller performs better since the neural 

network simulated the system's nonlinearities and uncertainties. The 

performance of the controller, approximation, and tracking errors are all 

improved by the Lyapunov function. In [22], the authors have shown an 

adaptive neuro controller for a robotic manipulator system utilising a radial 

basis function neural network (RBFNN). The unpredictable and nonlinear 

dynamics of a robotic manipulator are approximated by RBFNNs because they 

are theoretically tractable. A Signum function-based saturation function serves 

as an auxiliary controller that ensures the suggested control scheme's stability 

and resilience in the face of system uncertainties and disruptions.  

In [23], the authors have applied neural networks in the form of a nonlinear 

compensator to control the trajectory of robotic manipulators. The authors 

proposed a model learning scheme that was efficient in the effective learning of 
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the manipulator dynamics that provided effective control. Authors proposed a 

full-state feedback neural-based control for trajectory control of flexible joint 

manipulators which have very high uncertainties in dynamics. Lyapunov’s 

function validates the stability and effectiveness of the proposed controller. In 

[24] the authors have demonstrated the shortcomings of RNN solutions for 

motion control, such as error accumulation and convexity restriction for robotic 

manipulators. To address these problems, the authors suggested two modified 

neural network techniques. The modification of the control law by modifying 

the constraints resulted in unique ways for error accumulation and convexity 

restriction of robotic manipulator motion control. Both rigid and flexible joint 

robotic manipulators can benefit from neural networks. 

2.2.2 Fuzzy Logic Control (FLC) 
 

Fuzzy control is a way for representing and implementing the knowledge of a 

(smart) human about how to control a system. Fuzzy logic was the invention of 

Prof. L.A. Zadeh in 1965 [25]. The application of this FLC in steam engine 

control by Dr. E.H.Mamdani [26] made this popular. The fuzzification, fuzzy 

inference, and defuzzification are three-step used to implement a FLC [27]. The 

fuzzification is known as converting the input values into fuzzy sets with the 

help of fuzzy rule bases. This is the initial step in the design of the FLC. 

Fuzzification considers the uncertainties of the systems and evaluates the 

conditions for the controller design. Fuzzy Inference identifies which control 

rules should be applied to the fuzzified inputs and outputs the controller in the 

form of fuzzy sets. Defuzzification is the process of getting the actual output 

from the fuzzy output of the controller, and it therefore interacts with the actual 

system or mathematical model under consideration. A FLC based controller 

architecture is shown in Figure 2.4 below. FLC offers consistently improved 

results for systems operating in a nonlinear, complicated, and unpredictable 

environment. 
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Figure 2.4 Fuzzy Logic-based control approach 

There are two popular approaches to design the FLC for a nonlinear system 

i. Mamdani Approach 

ii. Takagi & Sugeno’s Approach 

Mamdani's technique employs linguistic fuzzy modelling, which has a high 

interpretability but a poor accuracy, whereas Takagi and Sugenos' method 

employs exact fuzzy modelling, which has a high accuracy but a low 

interpretability. Due of the inherent complexity, uncertainties, and nonlinearity 

in robotic manipulators, massive computations are required, designing the 

control law complex task. FLC describes the dynamic modelling and 

computational time constraints efficiently. It is an important part of intelligent 

control for controlling the robotic manipulators in an intended manner. FLC is 

implemented at a hierarchical level.  C.M Lim and T.Himaya  [29] presented the 

application of FLC in robotic manipulators. The authors illustrated how to use 

fuzzy logic to simplify control rules and improve a system's performance. The 

authors designed a PI controller using fuzzy logic, where PI control provides 

transients and steady-state features while fuzzy logic enhances the damping 

properties. By measuring the parameters and giving them a membership 

function value thus obtaining fuzzy sets, the control law is determined. Every 

rule has a value for the outcome's membership function. A linear combination 

of results for each rule with membership function weights yields the final 

control action. Simulation experiments have been used to verify this method's 

efficacy. In [30], the authors implemented a ordered control on a robotic 

manipulator using FLC. The authors designed a fuzzy PD controller for joint 

torques and positions whereas kinematic aspects are in supervisory mode. Thus, 

it has a hierarchy in control. A comparative study of fuzzy PD and conventional 

Fuzzification---------> Defuzzification 
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PD controllers is presented, and fuzzy PD gives better performance. In [31], the 

authors have designed a CS algorithm tuned optimal fuzzy PID controller. 

Another hybrid fuzzy PID based control schemes for robotic systems have been 

illustrated in [32]. Multivariable and nonlinear dynamics of robotic 

manipulators make it difficult to design the control law. By taking this into 

account, the authors of [33] suggested a model-free hybrid fuzzy logic and 

neural network-based control method that takes into account the multi-input 

multi-output (MIMO) characteristics of robotic manipulators. Joint locations 

are controlled by a fuzzy logic controller, and the coupling between joints is 

controlled using backpropagation neural networks. Consequently, neural 

networks enhance the performance of controls. The experimental results 

demonstrate that this technique improves trajectory tracking. For a multi-link 

robotic manipulator, the authors in [34] developed a robust fuzzy model  control 

algorithm that considers torque disturbances and measurement noise,  a self-

tuning adaptive fuzzy technique with a mechanism for adjusting the parameters. 

This method is unique because it employs a rule-base of the IF - THEN control 

input type. The suggested method offers increased stability and transients. The 

Lyapunov stability approach confirms that the tracking error is confined. The 

authors in [35], developed the fuzzy support vector machine (SVM) control 

methods for robotic manipulators in combining the genetic algorithm (GA) and 

the least square algorithm (LSA). SVM identified the system's FLC and 

nonlinearities. The controller's parameters have been tuned using the techniques 

for optimization GA and LSA. While GA performed the live optimization of 

these parameters, LAS performed the offline optimization of the SVM 

parameters. Studies in simulations have verified the efficacy of the suggested 

control technique. For a nonlinear MIMO robotic system, a PD-type fuzzy 

iterative learning control (ILC) [36] was developed. The gains of the PD type 

ILC controller design was optimized using fuzzy logic. In [37] authors 

presented an adaptive fuzzy state feedback design for a flexible robotic 

manipulator system. Fuzzy logic has approximated the uncertainties and 

actuator saturation. The combination of backstepping and command filtering 

developed a novel adaptive fuzzy tacking backstepping control.  
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FOPID is a reliable and proficient approach for controlling nonlinear and 

unpredictable systems such as robotic manipulators. Researchers are 

implementing this method for controlling nonlinear systems. The authors 

introduces a fractional order fuzzy (FOFPID) [38] controller for 

manipulator's trajectory control. The suggested controller is strong enough to 

handle the system's nonlinearities and uncertainties. Using fuzzy inference rule 

bases, input variables like error, its derivative, and its integration are fuzzified. 

The authors compared the performance of conventional PID, fuzzy PID, 

FOPID, and FOFPID. Integral absolute error (IAE) and integral of absolute 

change in controller output serve as performance indicators for the controllers 

(IACCO). The Cuckoo search (CSA) method has been used to fine-tune the 

controller's settings. As an outcome, among all the controllers compared, the 

FOFPID controller performed the best. In [39] the authors,  have proposed An 

NLA-FOPID controller for a two-link robotic manipulator. The proposed 

controller was evaluated for trajectory tracking, disturbance rejection, sensor 

noise rejection, and a number of other system uncertainties. The parameters of 

the controller have been optimised using the backtracking search algorithm 

(BSA). In comparison to the nonlinear adaptive fuzzy PID controller, the 

suggested controller provided better and enhanced performance. In [40] the 

authors,  presented a fuzzy fractional order PID (FFOPID) for a robotic 

manipulator aimed for tracking the trajectory. The controller manifolds PID 

error. The controller is calculated by a fuzzy inference system using the PID 

elongated error and fractional order integral. Zafer Bingul et-al. [41] 

developed the Mamdani type FLC for trajectory tracking of a robotic 

manipulator. The three separate cost functions used for PSO are mean of the 

absolute magnitude of error (MAE), mean of the squared root of error (MRSE), 

and reference-based error with control effort (RBECE). The suggested 

controller has been demonstrated as more reliable and efficient when compared 

to traditional PSO tuned PID. In the majority of applications, robotic 

manipulators are employed to repeatedly carry out different tasks. In [42], the 

authors presented a repeating learning control using adaptive fuzzy logic. After 

implementing an adaptive fuzzy approach, fuzzy logic is used to model the 

initial step's uncertainty. The proposed method is novel since it uses dynamic 
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rule bases and hence features self-tuning membership functions. The closed 

loop's boundedness is ensured via the Lyapunov approach. In [43] the authors, 

proposed the interval type-2 fuzzy PID integral control approach,  using GA to 

tune the controller's parameters. The fitness function was the integral of the time 

square error (ITSE). The suggested technique was determined to be more 

reliable and effective in a comparison analysis of the proposed controller with 

type-1 fuzzy PID and conventional PID. Fuzzy logic has a positive impact on 

SMC's ability to handle the system's uncertainty. In [44],  for trajectory control 

of robotic manipulators, the authors introduced a MIMO adaptive fuzzy 

terminal SMC. The suggested approach incorporates an adaptive system for 

terminal SMC together with the benefits of fuzzy logic. It performed better 

when compared to alternative ways. The convergence of the error was given by 

the bounded Lyapunov stability criteria. Based on hybrid PSO-GA optimization 

approaches, the authors of  [45], developed a type-1 and type-2 FLC for robotic 

manipulator trajectory control. These techniques have been employed to 

calculate the membership function values of the proposed fuzzy controllers. 

Fuzzy logic is a prominent pick for robotic control systems. The literature 

clearly demonstrate that researchers are employing these meta-heuristics 

algorithms to adjust the parameters of control techniques to provide intelligence 

in robotic manipulator’s control. 

2.2.3 Expert Control Systems (ECS) 

ECS are intelligent control technique that simulates the expertise of a human 

expert while providing effective control. They integrate control design into the 

system and create an inference mechanism [46]. These control methods do not 

require precise information and thus can handle information uncertainty 

effectively. Expert systems are intelligent algorithms that use knowledge and 

inference procedures to solve complicated problems [47]. To perform the 

intended tasks the systems get decision making abilities utilizing the inference 

mechanism based on certain rules. The rule base creates reasoning and 

determines the logic so that the inference mechanism can infer the conclusions 

from knowledge base.  
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An ECS expert control systems are computer-based programs that replicate 

human intelligence by using an inference mechanism and thus can deal the 

complex real-time problems effectively. In [48], the authors have presented the 

design, principles, classification, and some implementation issues in the expert 

control methods. Several challenges need to be addressed when implementing 

these approaches including real-time operational knowledge bases, competent 

online information environments, real-time intelligent controller design, 

parallel reasoning, and an intelligent interface between control schemes and the 

user. Therefore, it is relatively perplexing to implement such techniques in real 

time with the real rule base.  

The technological advancements in AI techniques like FLC and ANN have 

created more opportunities to design expert control methods.  The architecture 

of an expert control system utilizes a model of the system, an inference engine 

to perform a real-time control mechanism, a knowledge base, a learning 

mechanism, and an interface to the user.  In [48], the authors have proposed the 

guidelines and the development method of expert control systems in six 

different phases. Table 2.1 illustrate the six phases of the development of an 

expert control system. 

Table 2.1 Development model of an ECS 

S. No. Development 

Stages 

Description of each stage 

1 Feasibility analysis 

 

 Analysis of all the issues such as cost, and 

development time is carried out.  

2 System 

specification 

In this stage, the problem is defined, and a task 

assessment has been performed. 

3 System design This is the actual design stage that includes the 

concept and logic of control, and structure design.  
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4 System 

Construction 

The system is being built with an inference 

mechanism and a real-time algorithm. 

5 Software design Using AI-based algorithms the software has been 

designed. 

6 Evaluation stage This stage evaluates the efficiency and usability 

of the designed control. 

In the very first step, a feasibility study is performed and all issues such as cost, 

resources, and development time need to be evaluated. The second stage focuses 

on system specification and defines the problem and assesses all the tasks to be 

completed. The third steps determine the structure of control and create the 

concepts and logic. This stage is the system design and is very important in the 

development of expert control. The next stage is the actual construction stage 

where the inference mechanism and real-time control law is determined. The 

software model utilizing AI-based algorithms has been designed in the fifth 

stage. Finally, the last stage is about evaluation that checks the control designed 

for efficiency and usability. In this stage, expert control is evaluated in all 

aspects.  

The expert control has been designed for robotic applications by researchers.  Z. 

Geng and M. Jamshidi [49] designed a real-time ECS for trajectory tracking of 

a robotic manipulator having two links. An expert self-learning controller for 

controlling the trajectory problem of the manipulator having mathematical logic 

and procedures has been designed. This eliminated the constraints like the 

requirement of suitable system dynamics and disturbances have been eliminated 

by imparting decision-making in the proposed self-learning controllers. Hence 

the precise model is not required, and a data-rule base was able to meet the 

system requirement. Astrom et-al. [50] illustrated the heuristics and logic in 

expert control law that makes the conventional method simpler and easier. The 

authors proposed the rule-based expert system architecture having the 

components like the rule base creating the reasoning, database, and inference 

engine- imparts the decision making, and user interface.  
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In [51], the authors have suggested an expert intelligent control algorithm for a 

real-time path formation of a manipulator. The proposed algorithm was able to 

generate three different paths having a decision-making capability to avoid and 

obstacle and discover the shortest path. It is evident from the literature that ECS 

is preferred for complex systems. The requirement of a perfect knowledge base 

makes these expert control methods complex. The popularity of FLC, ANN, 

and other AI techniques has gained more popularity in the control of robotic 

systems.  

2.2.4 Machine Learning Control (MLC) 

MLC is a model-free control technique that has gained popularity recently and 

effectively manages complex nonlinear dynamics [52]. It is a data-driven 

control methodology that suits the model-free dynamics. The main focus of 

MLC is on the control law, and the controller adapts to any known or unknown 

dynamics. MLC is a blend of machine learning techniques, complicated 

dynamic nonlinear systems, and feedback control [53]. It is a technique for 

controlling and analysing the nonlinear systems and do not require knowledge 

of the system's precise model.  

 

 

 

 

  

 

Figure 2.5 Architecture of MLC 

The metaheuristic optimization algorithms such as GA, PSO, and ABC 

determine the control law using specific objective functions. Figure 2.5 presents 

the architecture of MLC. Thus tuning the parameters imbibes the intelligence in 
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this control scheme MLC combines the advantages of machine learning with 

artificial intelligence. MLC is an evolving development in the control of 

complex systems. The data availability provides learning and improves the 

performance of the systems. N. Gautier et- al. in [54] illustrated this model-free 

in flow control based utilizing the genetic algorithm. Considering the popularity 

of this control approach, there is an utmost requirement of for the mathematical 

formulation of MLC.  Akshat Diveev et-al. [55] formulated the mathematical 

concepts for this control using supervised and unsupervised learning theories. 

The authors implemented neural networks to calculate the parameters for an 

unknown function that maps the input and output. Shouyi Wang et al. [58] 

reviewed the supervised, unsupervised, and reinforcement learning mechanisms 

in machine learning and analyzed their applications in bipedal robotic control. 

In [53] the authors proposed an MLC in real-time for a robotic manipulator. 

This control has been designed using a hybrid artificial bee colony (ABC) and 

a fuzzy theory-based learning algorithm. A fractional order PID MLC has been 

proposed where the hybrid ABC fuzzy algorithm has been implemented to tune 

the controller aimed for motion control a six degree of freedom articulated 

robotic manipulator.  

Fuzzy rules, membership functions, and fractional controller gains have been 

computed using the ABC algorithm. The proposed FOPID MLC was tested 

against the PID and fuzzy PID, and found to be effective for motion control of 

the manipulator. This sets the stage for future research in the machine-learning 

control of robotic manipulators. Without having full knowledge of the system, 

MLC provides the control mechanism for a system.  This capability paves the 

way for more research into robotic manipulator control using MLC. 

2.2.5 Optimization Algorithms 

Optimization is the process of achieving the best feasible solutions for the 

control design parameters by either minimizing or maximizing the computed 

objective function within the restrictions identified. These optimization 

techniques include evolutionary algorithms like a genetic algorithm (GA) and 

other nature-inspired algorithms based on the intelligence of a swarm, known 
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as swarm intelligence like particle swarm optimization (PSO), ant colony 

optimization (ACO), artificial bee colony(ABC), crow search optimization 

(CSO), and whale optimization algorithm (WOA) [59] [60]. 

These optimization techniques are implemented to find the optimal solutions for 

the controller parameters. Each of the control schemes has specific parameters 

which determine the functionality of the uncertain and nonlinear dynamics of 

the robotic manipulator in a desired manner.  

 

Figure 2.6. Implementation of a metaheuristic optimization technique 

in control 

 

Figure 2.6 illustrates the implementation of optimization algorithms on control 

techniques. Thus, considering the performance of robotic systems, these 

metaheuristics optimization algorithms yield the optimum value of an intended 

objective function [61]. For tracking the trajectory these algorithms are 

implemented using an objective function which is formulated on the basis of the 

control law design.  Four different types of error functions like IAE, ITAE, ISE, 

and ITSE have been evaluated as objective functions [62].  

The feedback control’s main aim is to minimize the error e(t). The generalized 

form of the objective function is expressed below in eq. (2.1). 

                                              𝐽 = ∫ 𝑡𝑎[𝑒(𝜃), 𝑡]𝑏𝑑𝑡
∞

0
                                            (2.1) 

                                                𝑒(𝜃) = (𝜃𝑟 − 𝜃𝑣)                                                 (2.2) 
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J is the cost or objective function and (𝑒(𝜃), 𝑡) is the error. The difference 

between the desired or reference trajectory and the actually obtained trajectory 

is termed as an error. For different values of a and b different types of error 

functions are obtained. 

a=0 and b=1; Integral Absolute Error IAE,  

a=1 and b=1; Integral Time Absolute Error ITAE, 

a=0 and b=2; Integral Square Error ISE,  

a=1 and b=2; Integral Square Time Weighted Error ISTE 

a=2 and b=2; Integral Square Time Squared Weighted Error ISTSE 

 

In robotic applications, these metaheuristic algorithms minimize the error 

function by providing the optimal values of controller parameters. One of the 

key objectives of implementing these metaheuristic optimization algorithms in 

the control of robotic manipulators is to find the optimal solution for problems 

like trajectory control [63]. Table 2.2 shows the applications of metaheuristic 

algorithms in robotic manipulators. All of these algorithms pave the way for 

intelligent control of robotic manipulators. The controller’s parameters are fine-

tuned using these and better performance of the system has been achieved using 

these algorithms.   

 

Table 2.2 Applications of metaheuristic algorithms in robotic manipulators 

Year Algorithm Inspiration Application in Robotic 

Control 

References 

1975 GA Evolution Adaptive FLC, Computed 

torque control. Optimal 

PID and SMC. Adaptive 

control, Multi-objective 

PID, PID controller. 

[63],[66],[6

7], 

[68],[69],[7

8] 

[79] 

1995 PSO Bird flock FOPID for a robotic wrist 

having two links, fuzzy 

PID for a two-link robotic 

manipulator. Multi-

objective FOPID 

[62], [63], 

[67] 

[77], [80], 

[81] 

[82] 
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For trajectory tracking utilising multi-objective PSO (MOPSO), a FOPID 

controller is described in [62]. The suggested controller demonstrated greater 

performance in tracking trajectories and managing system uncertainties. The 

2006 ACO Ant colony PID controller. Optimal 

path planning 

[63], [71], 

[83] 

[84], [85] 

2006 ABC Honeybee Hybrid ABC-GA-based 

fuzzy FOPID, Type 2 

fuzzy PID. MLC. Optimal 

PID for a two-link robotic 

manipulator. 

[53],[86] 

[87], [95] 

 

2009 FFA Fireflies’ 

social 

behavior 

Path planning for robotic 

system  

[88] 

2013 GWO hunting 

mechanism 

of grey 

wolves 

PID controller. Hybrid 

GWO-ABC tuned FOPID. 

Hybrid GWO- WOA 

tunes FLC. 

[89].[90],[9

1] 

2016 WOA Social 

behavior of 

humpback 

whales 

PID for a robotic 

manipulator. Sliding mode 

controller (SMC) 

[92],[93] 

2017 BAS foraging 

behavior of 

the beetle 

RNN for tracking control 

& impediment prevention 

of a robotic manipulator 

[72] 

2017 CSO The 

behavior of 

the chicken 

swarm 

Trajectory planning of 

manipulator 

[70] 

2018 CSA Behavior of 

Cuckoos 

FOPID for a robotic 

manipulator. 

[76] 
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authors in [63] illustrated trajectory control utilizing several metaheuristic 

optimization techniques. The location and joint objectives are part of the 

optimization problem's objective function. Yadav et al. [64] used the traditional 

Zigler Nichols approach with optimization algorithms like GA, PSO, and ACO 

to create a hybrid controller for motion control of a robotic manipulator. All 

other methods, including the traditional Zigler-Nichols approach, are 

outperformed by the GA. The majority of engineering applications use multi-

objective optimization, which frequently identifies solutions that meet many 

objectives. Contrary to conventional methods, tuning the controller using multi-

objective optimization techniques is challenging since it must exhibit high 

precision, energy savings, and the required response.  

In [65], the authors presented a multi-objective evolutionary optimization 

method for the trajectory control of a two-link robotic manipulator using a non-

dominated sorting GA (NSGA-II). This approach iterates to deliver the best 

gains for multivariable PID controllers for the best fitness functions under 

specific initial conditions. An effective solution selection method based on 

classes of dominance is implemented by the NSGA-II algorithm. The way the 

selection operator operates is different from GA. The suggested optimization 

method, which is based on NSGA-II, offers a useful way to create 

straightforward solutions with high reliability in closed loops. M Vijay et al. 

[66] employed GA to create PD and PID controllers with high dynamic 

characteristics, global stability, better disturbance rejection, and minimal 

tracking error. This is a basic direct search technique that doesn't rely on 

numerical or analytical gradients. As an objective function, three distinct error 

functions- IATE, ISE, and ISTE have been evaluated. ISTE gives the lowest 

value of the objective function in comparison to other methods, while a GA-

tuned PID controller produces the lowest tracking error and best disturbance 

rejection. In [67], the authors have proposed a novel nonlinear fractional PID 

controller for a two-link robotic manipulator. NSGA-II is implemented to 

optimize the related parameters and controller gains for minimum error value 

and control variations. The designed NLF-PID controls the two-link robotic 

manipulator effectively. In [69], authors designed two PID controllers for 

tracking control of both links of a robotic manipulator using the GA. The 
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performance indices used in this case are the integral square error (ISE) and 

the integral square of change in controller output (ISCCO) for both links. It was 

statistically determined that there is always an optimum solution within a certain 

range by executing this optimization 2000 times. 

The application of nature-inspired algorithms in optimum trajectory planning of 

robotic manipulators is very well evident in the literature. In [70] the authors 

have implemented CSO to track the trajectory of manipulators. The trajectory 

is generated using a B-spline. To determine the optimal trajectory, the minimum 

travelling time is considered as a fitness function. The experimental results 

support the proposed algorithm. In [71], authors designed ACO tuned PID 

controller to achieve optimal trajectory tracking of robotic manipulators. The 

authors tuned the controller gains using ACO for both scenarios, i.e. with and 

without external disturbances. The proposed method has been proven effective 

and Simulation studies shown the fast convergence of error.  For tracking 

control and obstacle avoidance of a robotic manipulator, Ameer Hamza Khat et-

al. [72] introduced a metaheuristic control method beetle antenna olfactory 

RNN. This strategy combines the tracking control and obstacle avoidance 

problems by adding a penalty term to the cost function. The beetle's olfactory 

capabilities for locating food are the inspiration for this optimizer. The 

efficiency of the suggested control framework is confirmed by the results of the 

simulation studies. In [73], the authors proposed an intelligent algorithm 

Weighted Jacobian Rapidly exploring random tree (WJRRT) for path planning 

of robotic manipulators. Each node of the tree in the WJRRT algorithm has a 

fitness rating that aids in deciding the ultimate route. Several robotic 

manipulator models are simulated, and the results are compared using the 

Jacobian Transpose (JTRRT), Bidirectional RRT (BiRRT), and Tangent Bundle 

RRT (TBRRT) algorithms. Making the hybrid algorithm provides the 

opportunity to the use of the advantages of these metaheuristic optimizations. 

In [74], the authors introduced a novel hybrid artificial bee colony-genetic 

algorithm (ABC-GA) optimization technique-based fractional-order fuzzy pre-

compensated fractional order PID (FOFP-FOPID) controller. In trajectory 

tracking, the ITAE function has been considered as the objective function. The 

intelligent control of robotic manipulators is an area that researchers are very 
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interested in; hence these metaheuristic algorithms are quite important. A 

comparison of several optimization techniques for controlling robotic 

manipulators was presented by Richa Sharma et al. [75]. The authors used GA, 

PSO, and simulated annealing (SA) to adjust the traditional PID controller. The 

simulation results demonstrate that PSO performs better than GA and SA. As a 

result, optimization approaches have been extensively used and are currently a 

prevalent method for developing control mechanisms. 

2.3 Comparison of intelligent control methods 
 

The intelligent control methods have the ability to alter the performance of the 

robotic manipulator systems robustly. Such methods introduce intelligence in 

the manipulators by imbibing decision-making. ANN-based control methods 

impart the learning mechanism using the data as training and test sets. ANN 

control method is proven efficient but requires large real-time training and test 

data sets. FLC has a sophisticated rule base construction yet manages the system 

uncertainties well. Expert systems are software program-based control methods 

that requiring an extensive knowledge data base which makes them complex. 

MLC is a model-free control approach that does not require exact mathematical 

modelling. The metaheuristic optimization algorithms are used in design of 

MLC controllers. Optimization techniques find optimal values of the controller 

parameters; based on these parameters, a cost function is optimized. This cost 

function measures the system's performance. Thus, these optimization 

techniques optimize the system performance for a particular problem like the 

trajectory control of robotic manipulators. The previous section reviews the use 

of several of these optimization strategies. The no free lunch (NFL) theorem 

states that no optimization strategy can provide the optimal outcomes for all 

optimization problems. As a result, researchers are continuously developing 

novel optimization techniques like the red fox optimization algorithm (RFO), 

Tunicate Swarm algorithm (TSO), Marine Predators Algorithm (MPA), Chimp 

optimization algorithm (COA), Water strider algorithm, and Student 

psychology-based optimization method (SPBO), crow search algorithm (CSO), 

and Owl search algorithm (OSA) [96], [97] to solve distinct complex 

engineering problems. Future research will be facilitated using these novel 



27 
 

methodologies for the intelligent control of robotic manipulators. Each of these 

methods has certain benefits and drawbacks. Table 2. 3 presents the important 

characteristics including specific advantages and disadvantages of all intelligent 

control methods. 

Table 2.3 Key features of intelligent control techniques 

S. 

No. 

Intelligent 

Control 

Methods 

Key features Advantages Disadvantages 

1 ECS Has an inference 

mechanism requiring 

a knowledge base. 

Employed in process 

industries. 

Making 

decisions with 

a knowledge 

base. Rapid 

and consistent. 

Requirement 

of a perfect 

knowledge 

base. 

2 FLC Fuzzification, 

defuzzification, and, 

rule based. 

Simple, easy 

and effective 

scheme. 

The 

construction of 

rule base is 

complex. 

3 ANN based 

Control 

Training of neural 

networks is essential 

in this data driven 

method. 

Effective with 

sufficient data 

sets. Inculcates 

intelligence 

and decision 

making. 

Huge training 

and test data 

sets are 

needed. 

4 Optimization 

algorithms 

Determine the best 

(optimal) solution. 

Proficient when 

implemented control 

techniques.  

Stochastic nature.  

Simple 

approach, 

provides the 

optimal 

solution for an 

optimization 

problem. 

Execution of 

these 

techniques is 

challenging 

and time-

consuming. 
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5 MLC No need for exact 

knowledge of system. 

Metaheuristic 

algorithms are 

implemented to 

determine the 

controller. 

It is a model-

free technique. 

The system 

does not need 

to be precisely 

modelled. 

The controller 

design is 

complex for 

varying 

conditions 

 

AI has gained in popularity as a result of technological developments. AI 

enabled intelligent control graces humankind's intelligence to robotic systems. 

Over the past few decades, robotics has greatly increased in popularity and 

affected all industrial application fields. The use of the above-presented AI 

techniques in robotic control applications has tremendously increased over the 

last few decades. Intelligent control is the application of AI and optimization 

techniques in robotic systems to achieve the desired goals [94]. The use of 

intelligent control in robotic system applications has very prominent future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

Chapter 3 

 

Analysis of control strategies for robotic manipulators 

 

3.1 Introduction 
 

Robotic manipulators are highly nonlinear and extremely uncertain systems. 

These systems have applications in different areas including medical and 

pharmaceuticals. Robotic systems provide assistance and help to humans by 

performing some tasks. Technological advances and research have improved 

robotics and robotic systems to a larger extent. Such systems have to interact 

with real-time situations so precise control is required. Researchers are 

continuously striving to explore new different methods to enhance the 

performance of robotic systems.  

Various conventional methods like SMC, adaptive control, robust control, 

optimal control, PID, and FOPID have been implanted on robotic manipulators 

for controlling the manipulators for problems like trajectory tracking and path 

planning. Each of these control laws impacts the performance of robotic 

manipulators. Further, the use of artificial intelligent techniques in combination 

with such conventional methods has imparted decision-making in the robotic 

system thus named intelligent control. In this chapter, the dynamics of two-link 

robotic manipulators, modeling in MTALAB/Simulink, robust adaptive control, 

SMC, PID, FOPID, and extremum seeking control have been presented.   

 

3.2 Dynamics of a two-link Robotic Manipulator 
 

A two-link robotic manipulator has been used for the validation of control 

strategies [2]. Figure 3.1 presents a robotic manipulator having two links with 

masses 𝑚1 , 𝑚2  length 𝑙1, 𝑙2, and angular positions 𝜃1, 𝜃2. The unit of mass is 

kilograms, length is meters, and angular position is in degrees. The trajectory 

control problem has been studied utilizing this model. This robotic manipulator 

is modelled using the Lagrangian function which considers the energies of the 

system.  
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Figure 3.1 A two-link robotic manipulator 

 

The dynamics of a robotic manipulator is obtained using the Euler-Lagrange 

technique. The Lagrangian function 𝐿 considers the kinetic and potential energy 

of the links. 

                                        𝐿 = 𝐾 − 𝑈                                                           (3.1) 

Where K is kinetic energy and U is potential energy of the system. 

Total kinetic energy and potential energy of the system is as follows: 

 𝐾 =
1

2
  𝑚2𝑙1

2𝜃̇1
2
+

1

2
  𝑚2𝑙2

2( 𝜃̇1
2
+ 𝜃̇2

2
+ 2𝜃1̇𝜃2̇) + 𝑚2𝑙1 𝑙2 𝑐𝑜𝑠 𝜃2( 𝜃̇1

2
+

𝜃1̇𝜃2)̇                                                                                                             (3.2) 

          𝑈 = −(𝑚1 + 𝑚2)𝑔𝑙1 𝑐𝑜𝑠 𝜃1 − 𝑚2𝑔 𝑙2 𝑐𝑜𝑠(𝜃1 + 𝜃2)                        (3.3) 

The Lagrangian function of the system can be represented as follows: 

𝐿 =
1

2
  𝑚2𝑙1

2𝜃̇1
2
+

1

2
  𝑚2𝑙2

2( 𝜃̇1
2
+ 𝜃̇2

2
+ 2𝜃1̇𝜃2̇) + 𝑚2𝑙1 𝑙2 𝑐𝑜𝑠 𝜃2( 𝜃̇1

2
+

𝜃1̇𝜃2)̇ +(𝑚1 + 𝑚2)𝑔 𝑙1 𝑐𝑜𝑠 𝜃1 + 𝑚2𝑔 𝑙2 𝑐𝑜𝑠(𝜃1 + 𝜃2)                                (3.4)                                           

Considering the Lagrangian function, the following equations of motions are 

used to obtain the dynamics of the system, 

                              𝑇1 =
𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝜃1̇
) −

𝑑𝐿

𝑑𝜃1
                                            (3.5) 

                             𝑇2 =
𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝜃2̇
) −

𝑑𝐿

𝑑𝜃2
                                                    (3.6) 



31 
 

After placing the Lagrangian function from eq. (3.5 - 3.6), following dynamical 

expressions are obtained  

 𝑇1 = [(𝑚1 + 𝑚2)𝑙1
2 + 𝑚2𝑙2

2 + 2 𝑚2𝑙1 𝑙2 𝑐𝑜𝑠 𝜃2]𝜃1̈+[𝑚2𝑙2
2 + 𝑚2𝑙1 𝑙2 

𝑐𝑜𝑠 𝜃2]𝜃2̈- 2 𝑚2𝑙1 𝑙2 𝑠𝑖𝑛 𝜃2 𝜃1̇𝜃2̇- 𝑚2𝑙1 𝑙2 𝑠𝑖𝑛 𝜃2 𝜃̇2
2
+(𝑚1 + 𝑚2)𝑔 𝑙1 𝑠𝑖𝑛 𝜃1+ 

𝑚2𝑔 𝑙2 𝑠𝑖𝑛(𝜃1 + 𝜃2)                                                                                         (3.7)                                                          

𝑇2 = (𝑚2𝑙2
2 + 𝑚2𝑙1 𝑙2 𝑐𝑜𝑠 𝜃2)𝜃1̈+𝑚2𝑙2

2𝜃2̈ + 𝑚2𝑙1 𝑙2 𝑠𝑖𝑛 𝜃2 𝜃̇1
2
+ 𝑚2𝑔 𝑙2 

𝑠𝑖𝑛(𝜃1 + 𝜃2)                                                                                                  (3.8)                                                                                    

Utilizing the above equations, the generalized equation has been written as 

follows: 

                          𝑀(𝜃)𝜃̈ + 𝐶(𝜃, 𝜃)̇𝜃1𝜃 + 𝐺(𝜃) = 𝜏 ̇                                      (3.9)  
These equations can be expressed in the following general matrix form. 

[
𝑇1

𝑇2
] = [

(𝑚1 + 𝑚2)𝑙1
2 + 𝑚2𝑙2

2 + 2𝑚2𝑙1𝑙2𝐶2 𝑚2𝑙2
2 + 𝑚2𝑙1𝑙2𝐶2

(𝑚2𝑙2
2+𝑚2𝑙1𝑙2𝐶2) 𝑚2𝑙2

2 ] [
𝜃̈1

𝜃̈2

]  +

[
0 −𝑚2𝑙1𝑙2𝑆2

𝑚2𝑙1𝑙2𝑆2 0
] [

𝜃1̇
2

𝜃2̇
2] + [

−𝑚2𝑙1𝑙2𝑆2 −𝑚2𝑙1𝑙2𝑆2

0 0
] [

𝜃̇1𝜃̇2

𝜃̇2𝜃̇1

]           +

[
(𝑚1 + 𝑚2)𝑔𝑙1𝑆1 + 𝑚2𝑔𝑙2𝑆12

𝑚2𝑔𝑙2𝑆12
]                                                                               (3.10) 

where,  

𝐶1 = Cos (θ1)    𝐶2= Cos (θ2) 

  𝑆2= Sin (θ2)  and     𝑆12= Sin (θ1+ θ2) 

𝜃̈1, 𝜃̈2 = angular accelerations of the links.  𝜃1̇
2
, 𝜃2̇

2
 = centripetal acceleration 

𝜃̇1𝜃̇2 = Coriolis acceleration. Coriolis acceleration is prevalent because the first link 

serves as a rotational frame for link two. The nonlinear manipulator dynamics as shown 

in eq. (3.9-3.10) has been linearized for trajectory tracking using the following steps.  

1. To linearize, the system states has been assumed as follows 

                            𝑋1 = 𝜃1; 𝑋2 = 𝜃2; 𝑋3 = 𝜃̇1; 𝑋4 = 𝜃̇2                                     (3.11) 

                    𝑋̇1 = 𝜃̇1 = 𝑋3; 𝑋̇2 = 𝜃̇2 = 𝑋4; 𝑋̇3 = 𝜃̈1; 𝑋̇4 = 𝜃̈2                         (3.12) 
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2. The eq. (3.10) has been represented using different constants then 

Taylors series expansion about its equilibrium points 
𝜋

2
 and 0 has been 

performed.  

3. By differentiating, each variable is linearized with respect to all other 

variables. The following state space equation model has been obtained 

on linearizing about the equilibrium points: 

   [

𝑥1̇

𝑥2̇

𝑥3̇

𝑥4̇

] = [

0
0

−0.4568
0.2485

0
0

−0.6196
−6.6174

   

1
0
0
0

0
1
0
0

] [

𝑥1

𝑥2
𝑥3
𝑥4

]+[

0
0

0.7870
0.0426

0
0

−0.0426
0.1349

] [
𝑇1

𝑇2
] (3.13) 

                          [
𝑦1

𝑦2
] = [

1 0 0 0
0 1 0 0

] [

𝑥1

𝑥2
𝑥3
𝑥4

]+[
0 0
0 0

] [
𝑇1

𝑇2
]                            (3.14) 

For a stable system all the Eigen values must be negative, so on calculating the 

Eigen values of the linear model obtained in eq. (3.13-3.14), Eigen values are 

found to be complex conjugate thus making the system unstable.     

                                         eig(A)= [

0.0000 + 0.6942i 

0.0000 - 0.6942i 
0.0000 + 2.5675i 

0.0000 - 2.5675i 

]                              (3.15) 

Both the linear and nonlinear models considered for trajectory tracking problem 

in the next chapters, are inherently unstable hence there is requirement of the 

design of effective control method. The next sections describe the control 

methods designed. Further metaheuristic algorithms have been implemented to 

design the optimal control laws.  The two angular positions of both links are 

output trajectory that should track the reference trajectory. 

MATLAB/SIMULINK software has been utilized to perform mathematical 

modeling using the above equations. Figure 3.2 shows the flow diagram of 

mathematical modeling and Figure 3.3 shows the Simulink diagram of the 

mathematical model. A polynomial trajectory is given as a reference to two PID 

controllers. S_rigid is the MATLAB script having dynamical equations of the 

system. Two separate PID modules have been designed which are connected to 
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system model script. The separate error values and the combined outputs have 

been shown in the display.  

 

                         

                         Figure 3.2 Flow diagram of mathematical modeling 

 

 

Figure 3.3 Simulink diagram of the mathematical model  

 

 

MATLAB script ulitilizing the equations

Assigning the script in S- function

Simulink design using above s - function
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3.3 PID and FOPID Control 

PID controller is the most widely used industrial controller as more than 95 % 

of the industrial controllers are PID in nature. It has a high degree of robustness 

in controlling robotic manipulators due to their stability, adaptability, 

simplicity, and real-time control capabilities. PID controller has three gains 

namely, proportional, integral, and derivative. The design requires 

implementation of three parameters KP proportional gain, KI integral gain, and 

KD derivative gain. Each of these gains largely impacts the performance of the 

system. The PID controller becomes effective when no offset error and 

improved speed of response is required. Bennett, S. (1993) illustrated the PID 

control theory and implementation to the complex systems [98]. The PID 

controller’s equations and transfer function are written as follows: 

                             𝑌(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝐷
𝑑𝑒(𝑡)

𝑑𝑡
                     (3.16) 

                                        𝑌(𝑠) = (𝐾𝑃 +
𝐾𝐼

𝑠
+ 𝑠𝐾𝐷)𝐸(𝑠)                                   (3.17)  

                                                    𝐺(𝑠) = (𝐾𝑃 +
𝐾𝐼

𝑠
+ 𝑠𝐾𝐷)                              (3.18)  

This controller gives the output according to the error signal.  Finding the values 

of KP, KI and KD is known as tuning the controller. Ziegler Nicholas and Tyreus 

Luyben are the approaches used to tune the PID controllers. Numerous tuning 

methods are available in the literature, some include conventional approaches 

stated above while some employ intelligent methods such as metaheuristic 

algorithms to implement these control algorithms.   

Fractional calculus is capable of enhancing the performance of a traditional PID 

controller. Including the fractional operators in PID is termed as fractional order 

PID (FOPID).  It is designed by changing the integral and derivative term of a 

conventional PID to a fractional value ranging 0 to 1. Thus, it provides more 

design flexibility to the system by using two more terms. In [99], the authors 

have presented the trajectory tracking control of a three DoF robotic 

manipulators using PID and FOPID control methods. The FOPID control action 

is more effective as it provides additional gains to get the desired response [5]. 

The corresponding equation and transfer function of FOPID has been expressed 

as follows [10]:  
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           𝑇𝑖(𝑡) = 𝐾𝑃𝑖
𝑒𝑖(𝑡) + 𝐾𝐼𝑖

𝑑−𝜆𝑖

𝑑−𝜆𝑖
𝑒𝑖(𝑡) + 𝐾𝐷𝑖

𝑑µ𝑖

𝑑µ𝑖
𝑒𝑖(𝑡)  i=1,2                    (3.19)     

                                             𝐺(𝑠) = (𝐾𝑃𝑖
+

𝐾𝐼𝑖

𝑠𝜆𝑖
+ 𝐾𝐷𝑖

𝑠µ𝑖) E(s)                                       (3.20)  

Figure 3.4 Block diagram of PID controller design. 

 

Figure 3.5 Block diagram of FOPID controller design. 

 

Figure 3.4 and Figure 3.5 describes the implementation of the proposed PID and 

FOPID control for a robotic manipulator having two angular displacements. The 

robotic manipulator has multi-input multi-output (MIMO) characteristics so two 

different PID and FOPID has been designed. Efficient tuning is necessary for 

effective design of controllers. The metaheuristic algorithms GWO, WOA, 

MVO, and MFO have been implemented to tune these controllers for optimized 

gains. These algorithms require a performance criterion for the evaluation, so a 

cost or fitness function has been considered shown in eq. (3.21-3.22). The 
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proposed control methods are being tuned by these metaheuristic algorithms 

and thus, the optimum function value validates the effectiveness of these 

algorithms. The fitness function has been defined as the weighted sum of the 

integral absolute error IAE and the integral time absolute error ITAE of both 

links as shown in eq. (3.21-3.22) 

                                   𝑓 = 𝑤1 ∗ ∫ 𝑒(𝑡)𝑑𝑡 + 𝑤2 ∗ ∫ 𝑒2(𝑡)𝑑𝑡                               (3.21) 

                                  𝑓 = 𝑤1 ∗ ∫ 𝑒1(𝑡)𝑡𝑑𝑡 + 𝑤2 ∗ ∫ 𝑒2(𝑡)𝑡𝑑𝑡                        (3.22) 

𝑤1 and 𝑤2 are the weights assigned to IAE of both the links and their values are 

0.5. A cubic polynomial reference trajectory for the nonlinear model and a fixed 

step trajectory for the linearized model has been considered for tracking the 

trajectory. These reference trajectories have been illustrated in detail in the next 

chapters. The following steps present the methodology for achieving trajectory 

tracking for a robotic manipulator using PID and FOPID methods: 

1. Determine the reference trajectory to be followed by each link of the 

robotic manipulator. 

2. Design of a MIMO PID controller to control the trajectory. 

3. Implementation of the recent metaheuristic algorithms to tune the 

designed controllers. 

4. Statistical analysis and attainment of the optimal gains with minimum 

fitness value. 

5. Design of a novel hybrid metaheuristic algorithm to enhance the 

performance of the designed control scheme.  

6. Comparative analysis of implemented algorithms by assigning them 

Friedman’s ranking.  

The PID and FOPID controllers have been designed using the four 

metaheuristic algorithms GWO, WOA, MFO, and MVO for linearized model. 

The PID controller has been designed for trajectory tracking using the 

metaheuristic algorithms AOA, ASO, SHO, and STO for nonlinear models.  

Then a novel hybrid algorithm STOPSO has been designed and implemented 

using the PID controller for trajectory tracking. The detailed implementation 

and results have been presented in next chapters.  
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3.4 Robust Adaptive Sliding Mode Control 

SMC consider uncertainties and robustness as a part of design process. It is also 

known as variable structure control on account of switching nature of control 

[100]. The objective of SMC is to find the control law expression in terms of 

the systems state 𝑥 such that  𝑥         𝑥𝑑  asymptotically and 𝑒 = 𝑥 − 𝑥𝑑 

approaches to zero at an exponential rate. This is done with the help of a sliding 

surface. Adaptive sliding mode control (ASMC) [101] is dynamic adaptation 

within a sliding mode and is based on the purported equivalent control, which 

is discovered through direct observations of the output of a first-order low-pass 

filter with a discontinuous control that has a particularly modified magnitude 

value as its input. In [101], the authors have illustrated the design of ASMC for 

robotic manipulators. The schematic of the proposed ASMC is presented and 

shown in Figure 3.6 

 

 

Figure 3.6 Block Diagram of the adaptive SMC controller 

 

Consider the dynamic of n link robotic manipulator is given as 

                                  𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝜏                               (3.23) 

where 𝑞, 𝑞̇, 𝑞̈ ∈ ℝ𝑛 are angle, velocity and acceleration of joints respectively. 

𝑀(𝑞) is the positive definitive inertia or mass matrix, 𝐶(𝑞, 𝑞̇) is the centripetal 

coriolis matrix and 𝐺(𝑞) is the gravitational force and 𝜏 is the applied torque to 

the robot manipulator. In the design of a robust control system parameter are 
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written such that it contains a nominal value and contains parameter 

uncertainties or tolerance factor.  

The mass matrix can be expressed as  

                                            𝑀(𝑞) = 𝑀0(𝑞) + 𝛥𝑀(𝑞)                              (3.24) 

                                              𝐶(𝑞) = 𝐶0(𝑞) + 𝛥𝐶(𝑞)                                (3.25)

                                𝐺(𝑞) = 𝐺0(𝑞) + 𝛥𝐺(𝑞)                                  (3.26) 

Where 𝑀0(𝑞) is the nominal value and 𝛥𝑀(𝑞) is the parameter uncertainties or 

tolerance factor, means if 𝛥𝑀(𝑞) is given ±0.5% then mass value can vary 

from 99.5 to 100.5 respectively. The higher the parameter uncertainties 

percentage, the more robust the system will be. Similarly,  𝛥𝐶(𝑞) and 𝛥𝐺(𝑞) 

are the coriolis and gravitational parameter uncertainties factor. Mostly in 

Robust control one must deal with disturbances (input and output disturbances) 

so input can be bifurcated in to control law and disturbances.  

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝑢 + 𝑑𝑖(𝑡)    (3.27)  

Assume that disturbances 𝑑𝑖(𝑡) are bounded in nature. The eq (1) can be 

written in the following form  

        𝑀0(𝑞)𝑞̈ + 𝐶0(𝑞, 𝑞̇)𝑞̇ + 𝐺0(𝑞) = 𝑢 + 𝜂𝑖(𝑡)         (3.28)              

Where 𝜂𝑖(𝑡) is defined as  

                  𝜂𝑖(𝑡) = −𝛥𝑀(𝑞) − 𝛥𝐶(𝑞) − 𝛥𝐺(𝑞) + 𝑑𝑖(𝑡)          (3.29) 

Assumption 1: Mass matrix 𝑀(𝑞)𝑞̈ and coriolis matrix 𝐶(𝑞, 𝑞̇)𝑞̇are bounded in 

nature. Their derivatives are also bounded. 

Assumption 2: Disturbance 𝑑𝑖(𝑡) is bounded and continuous differentiable. 

The robotic manipulator’s trajectory tracking control can be calculated as 

follows. Define the error of trajectory tracking 𝑒 = 𝑞 − 𝑞𝑑, where 𝑞𝑑is the 

reference trajectory. Main objective is to obtain the control law  𝑢 such that 

output trajectory follows the reference trajectory. 

Consider the surface 𝑆 = 𝑒1 + 𝐾𝑒
𝑏

𝑎, where 𝑒1 = 𝑞̇ − 𝑞̇𝑑, 𝐾 >0, 𝑎, 𝑏 are the odd 

integrers. 

The dynamic error corresponding to eq. (3.27) is 

{
𝑒̇ = 𝑒1

𝑒̇1 = −𝑞̈𝑑 − 𝑀0(𝑞)−1(𝐶0 + 𝐺0) + 𝑀0(𝑞)−1𝑢 + 𝑀0(𝑞)−1𝜂𝑖(𝑡)
              (3.30)            
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The equivalent control is the sum of high-frequency control. Robust control 

primarily deals with low-frequency and adaptive high-frequency conditions [6].  

Overall controller will be the sum of low frequency controller and high 

frequency controller, shown as 𝑢 = 𝑢𝑙𝑓 + 𝑢ℎ𝑓. The representation of the 

equivalent control can be found out with or without disturbances and 

uncertainties.                 

      𝑢𝑙𝑓 = 𝑀0(𝑞)(𝑞̈𝑑 −
𝑏

𝑎
𝐾 {𝑒

𝑏

𝑎
−1} + (𝐶0 + 𝐺0)               (3.31) 

        𝑢ℎ𝑓 = −
(𝑆𝑇𝑀0(𝑞)−1)𝑇

∥𝑆𝑇𝑀0(𝑞)−1∥2 [∥ 𝑆 ∥∥ 𝑀0(𝑞)−1 ∥]                  (3.32)  

The nominal value of 𝑚1 = 0.3 and 𝑚2 = 1.2 are respectively and suppose the 

uncertainty of ±10 %.The other system parameter are 𝐿1 = 1 , 𝐿2 = 0.8, 𝐽1 =

𝐽2 = 5 𝑘𝑔.𝑚. The following two trajectories has been chosen for desired 

angular position 

       𝑞𝑑1 = 1.26 −
8

5
𝑒𝑥𝑝( − 𝑡) +

8

20
𝑒𝑥𝑝( − 5𝑡)                 (3.33) 

                𝑞𝑑2 = 1.5 −
8

5
𝑒𝑥𝑝( − 𝑡) +

8

20
𝑒𝑥𝑝( − 5𝑡)          (3.34) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Error of link 1 

 

Figure 3.7 and Figure 3.8 show the error value for both links and Figure 3.9 and 

Figure 3.10 shows the tracking error for both links. It is clear from the figures 
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that the proposed controller can track the reference trajectory. The initial 

deviations from the reference trajectory have been handled well by the proposed 

controller.  

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.8 Error of the link 2 

 

    Figure 3.9 Tracking error of the first joint with ASMC 
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                   Figure 3.10 Tracking error of the second joint with ASMC 

 

 

3.5  Stability Analysis 

 

For nonlinear control one of the most widely used techniques for stability 

analysis is the Lyapunov stability criterion which is known as the Lyapunov 

theorem. Lyapunov stability theory is widely used in control theory, robotics, 

and other fields of engineering to analyze and design control systems. It 

provides a powerful tool for ensuring the stability and performance of complex 

systems. This stability criterion utilizes the positive or negative definite and 

semi-definite properties of the functions. A function 𝑉(𝑥) can be characterized 

as positive definite (PD), positive semidefinite (PSD), negative definite (ND), 

and negative semidefinite (NSD) if it satisfies the following properties.  

 

If 𝑉(0) = 0, and 𝑉(𝑥) > 0 for  𝑥 ≠ 0, then function is PD. 

If  𝑉(0) = 0, and 𝑉(𝑥) ≥ 0 for  𝑥 ≠ 0, then function is PSD. 

If  𝑉(0) = 0, and 𝑉(𝑥) < 0 for  𝑥 ≠ 0, then function is ND. 

If  𝑉(0) = 0, and 𝑉(𝑥) ≤ 0 for  𝑥 ≠ 0, then function is NSD. 

 

According to the Lyapunov’s theorem, for  𝑥 = 0 an equilibrium point for a 

dynamic system 𝑥̇ = 𝑔(𝑥) , 𝐷 ∈  𝑅𝑛 is the domain consisting of equilibrium 

point, a positive definitive Lyapunov function 𝑉:𝐷 → 𝑅 a constantly 

differentiable function is assumed such that  𝑉(0) = 0, and 𝑉(𝑥) > 0 for  𝑥 ≠
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0 , derivative of 𝑉,  𝑉̇(𝑥) < 0 has to be negative definite then system would be 

stable [103], For  𝑉̇(𝑥) > 0 𝑜𝑟 𝑉̇(𝑥) ≥ 0   the system will be unstable.  

For analyzing the stability following Lyapunov function has been considered. 

                𝑉(𝑟, 𝜃) =
1

2
𝑚𝑟2 +

1

2
𝜃𝑇𝛤−1𝜃                     (3.35) 

Where 𝑟 = 𝑒̇ + 𝛼𝑒 and 𝛤is positive diagonal matrix. 

𝑉̇(𝑟, 𝜃) = 𝑟(𝑚𝑞̈ + 𝐶𝑞̇ + 𝐺𝑞 + 𝛼𝑚𝑒̇ − 𝜏) +
1

2
𝜃̇𝑇𝛤−1𝜃 +

1

2
𝜃𝑇𝛤−1𝜃̇        (3.36) 

             𝑉̇(𝑟, 𝜃) = 𝑟(𝑃𝑇 𝜃 − 𝜏) + 𝜃𝑇𝛤−1𝜃̇                      (3.37) 

Where 𝑃𝑇𝜃 = 𝑚𝑞̈ + 𝐶𝑞̇ + 𝐺𝑞 + 𝛼𝑚𝑒̇ 

                     𝑉̇(𝑟, 𝜃) = 𝑟(𝑃𝑇 𝜃 − 𝜏) − 𝜃𝑇𝛤−1𝜃̇,𝜃̇ = −𝜃̇         (3.38) 

Next is to design 𝜏 = 𝑃𝑇 𝜃̂ + 𝑘𝑟,     𝜃̇ = 𝛤𝑃𝑟  

then 𝑉̇(𝑟) = −𝑘𝑟2, which is negative semi definitive. The negative semi- 

definite derivative of the Lyapunov function validates the stability of the 

proposed controller.  
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3.6 Extremum Seeking Control (ESC) 

 

With the advent of technology robotic systems have gained much popularity 

and have been employed in many industrial applications. Robotic systems 

provide ease and comfort to human lives by embedding a certain amount of 

autonomy. Because of the large applications in industry effective control 

methods are extremely important. Researchers are continuously exploring ways 

to control these robotic systems and provide autonomous solutions for 

performing industrial tasks. ESC [104] is a control strategy that tracks the 

varying performance function.  It refers to monitoring the varying maximum or 

minimum of a performance function. Ariyur, K. B., & Krstic, M. (2003) 

presents the principles and real-time optimization using ESC [105]. ESC is a 

local optimizer and changes in the system dynamics are faster than the 

perturbations. Figure 3.11 describes the ESC method for robotic manipulator, 

the cost function or performance function is used to design the control law. It is 

an equation-free adaptive control approach that adapts to parameter changes. It 

is an optimization technique in which a sinusoidal perturbation is added to the 

control input u. Based on the control law, this method provides the optimum 

value of the objective function. To perform various industrial tasks robotic 

manipulator has to track the optimum position. ESC tracks that optimum value. 

 

Figure 3.11 Block diagram of ESC 

 

In [106], the authors have described each of these ESC techniques by 

performing a comparison and robustness analysis of each of the ESC 

techniques. Authors characterized these techniques as sliding mode ESC, neural 

network-based ESC, approximation-based ESC, and adaptive ESC. Robotic 
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systems have high nonlinearities, uncertain dynamics, and high disturbance, 

perturbation-based ESC gives robust trajectory performance. In conclusion, the 

authors suggested the use of approximation-based ESC when noise is not much 

effective, neural network ESC is preferred in the presence of significant noise 

while perturbation-based ESC is much more effective when a high level of noise 

and uncertain dynamic effects are present. Thus, perturbation-based ESC is 

found to be the most robust. ESC techniques are classified as shown in Figure 

3.12 

 

 

 

 

 

                          

                   

 

 

Figure 3.12 Classification of ESC Techniques 

Malek, H., & Chen, Y. (2016) [107] proposed a novel fractional order ESC that 

improved the convergence, robustness, and performance by incorporating 

fractional calculus in ESC. Simulation and experimental analysis validate the 

proposed scheme and show better performance as compared to the classic 

extremum-seeking algorithm. ESC provides a robust and stable response.  In 

[108], the authors performed a stability analysis of ESC and proved the stability 

of ESC by averaging method and singular perturbation analysis. Further in 

[109], the authors suggested inclusion of a dynamic compensation that resulted 

in improvement in the performance of ESC and enhanced stability. Researchers 

are continuously finding ways to improve the ESC. In [110], the authors 

designed a novel fast ESC to improve the static and dynamic performance of 

ESC without any steady state oscillations.  ESC is suitable for the system’s 

disturbances and variations in the parameters.  ESCs have applications in the 
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systems that have disturbances and variations in the parameters over time. ESCs 

find applications in areas like process control [111], Renewable energy [112], 

automotive industry [113], and robotic systems. 

 

3.6.1 Design of ESC for robotic manipulator 

 

Robotic manipulators being exceedingly nonlinear, uncertain, and MIMO 

systems, two separate ESCs using two different objective functions have been 

designed for two different links. A cubic polynomial reference trajectory has 

been considered, having optimum values of π/4 and π/6 respectively. 𝐽1 and 𝐽2 

are the objective functions used to track the optimum value of trajectories of 

both links.  

                               𝐽1 = (𝑝𝑖/4) − (0.89 − 𝑢)^2 + 𝐶                                         (3.39) 

                               𝐽2 = (𝑝𝑖/6) − (0.72 − 𝑢)^2 + 𝐶                                      (3.40) 

𝑢 is a control input, a sinusoidal perturbation is introduced to this. 𝐶 is a constant 

term. Figure 3.13 shows the reference trajectory considered for tracking and 

Figure 3.14 presents the output of the ESC designed for both links. 

 

 
 

Figure 3.13 Polynomial Reference trajectory 
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Figure 3.14 Output of ESC 

 
                               

Figure 3.15 Optimum value tracking of the reference trajectory 
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Figure 3.16 Optimum value tracking of the reference trajectory 

 

Figure 3.15 and Figure 3.16 show the optimum value trajectory tracking for 

both the links, where both the objective functions have been able to track the 

optimum value of trajectories. It is evident from both figures that the designed 

controller is able to seek the optimum value in the reference trajectories.  

 

Figure 3.17 SIMULINK model of ESC for trajectory control of robotic 

manipulator. 

The Simulink model of the ESC has been shown in Figure 3.17.  The polynomial 

trajectory as shown in Figure 3.13 has been given as a reference. A sinusoidal 

perturbation has been included in the control law, this changes the control law 
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and estimates the best input. Two different objective functions have been 

incorporated each on the different links of a robotic manipulator. The output of 

the proposed controller shows tracking of the optimal point of given reference 

trajectory.  

Robotic manipulators have various industrial applications that require tracking 

of optimum value of the desired trajectory. Because of the complex and 

uncertain behaviour of the robotic system, it is difficult to track the optimum 

value in such applications. ESC can track the optimum point trajectory 

satisfactorily.  
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Chapter 4 

 

Optimization and statistical analysis of control techniques for 

linearized model 

 

4.1 Introduction 
 

Metaheuristic algorithms are nature-inspired methods that find the best possible 

solution (optimum value) to any challenging problem. Mirjalili et al. [59] presented 

optimization algorithms inspired from nature to solve complex problems like 

trajectory control of robotic manipulators. The trajectory tracking has been 

achieved using control schemes like PID and FOPID. To find the optimal gains of 

these control techniques, the following algorithms have been implemented. The 

fitness function or cost function is the performance indices in the terms of the error 

values of the achieved trajectory. The metaheuristic algorithms implemented on 

PID and FOPID controllers provide the optimum value of the fitness function of a 

linear two-link robotic manipulator. 

 

i. Grey wolf optimizer (GWO) algorithm 

ii. Whale optimization (WOA) algorithm 

iii. Moth flame Optimization (MFO) algorithm                  

iv. Multi-verse optimization (MVO) algorithm 

 

Each of these algorithms is inspired by swarm intelligence and nature, these 

algorithms can be modeled and expressed in a mathematical approach [60]. The 

description and mathematical approach for these algorithms and their 

implementation in tracking the trajectory of a linearized two-link manipulator has 

been presented in the next sections.  
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4.2 Grey Wolf Optimization (GWO) 

 

Mirjalili et al. (2014) [114] projected an innovative stochastic swarm intelligence 

algorithm named GWO. The algorithm is inspired from the hunting behavior and 

social hierarchy of grey wolves and finds wide application to optimize complex 

optimization problems. Grey wolves are also referred to as idealist hearths 

belonging to the family of Canidae mostly lives in regions of north America. Grey 

wolves communicate through howling, barking and through different body 

language specially to build social hierarchy of packs. There are four levels in the 

hierarchy of wolves which are alpha (α) the leaders, beta (β) coordinating 

subordinates, delta (δ), omega (ω) as shown in Figure 4.1. Alpha wolves are the 

leaders of the pack and dictate to other wolves. Beta wolves are subordinate of 

alpha and guide the other wolves. Delta wolves stand third in hierarchy but 

dominates the omega wolves. These wolves include scouts, hunters, sentinels and 

are responsible for maintaining the safety of the entire pack. Omega wolves are last 

in the hierarchy and follow all the other dominant wolves. All four categories of 

grey wolves live in packs of 5 to 15 and show an important behavior of group 

hunting. These wolves first track and chase the prey, once the prey is chased then 

these packs of wolves enfold the prey and harass it until the prey is tired and finally, 

they attack the prey. The flow chart of GWO has presented in Figure 4.2 

The mathematical approach of GWO is illustrated as: 

Step 1: The position of grey wolves (search agents) initialized arbitrarily in the 

search space: 

                                        𝑌𝑖 = (𝑦𝑖 …………… . 𝑦𝑛)                                                           (4.1) 

where, n signifies the space dimension.   

Step 2: The coefficients a, A, and C are initialized and expressed as: 

                                                      𝐴 = 2 ∗ 𝑎 ∗ 𝑟1 − 𝑎                                                    (4.2)                       

                                                         𝐶 = 2 ∗ 𝑟2                                                                   (4.3)                                                         

where, 𝑟1, 𝑟2 represents the random numbers having range [0,1] and a is a constant 

decreasing from a value of  2 to 0 over the iterations. 
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Step 3: The fitness of all grey wolves is evaluated, depending on the problem the 

position of first three best grey wolves is termed as 𝑌𝛼, 𝑌𝛽, 𝑌𝛿 respectively. The 

position of rest of the grey wolves are 𝑌𝜔.  

Step 4: Upgrade the position of each grey wolves towards the best grey wolves (𝑌𝛼, 

𝑌𝛽, 𝑌𝛿) based on the following equations:  

 

              𝑋𝛼 = |𝐶1 ∗ 𝑌𝛼 − 𝑌|,     𝑋𝛽 = |𝐶2 ∗ 𝑌𝛽 − 𝑌|,    𝑋𝛿 = |𝐶3 ∗ 𝑌𝛿 − 𝑌|         (4.4)                                                       

 

      𝑌1 = 𝑌𝛼 − 𝐴1 ∗ (𝐷𝛼),    𝑌2 = 𝑌𝛽 − 𝐴2 ∗ (𝐷𝛽),    𝑌3 = 𝑌𝛿 − 𝐴3 ∗ (𝐷𝛿)     (4.5)                                               

 

                                             𝑌(𝑘 + 1) =
𝑌1+𝑌2+𝑌3

3
                                                             (4.6)                                                  

where, 𝐴1, 𝐴2, 𝐴3 and 𝐶1, 𝐶2, 𝐶3 are the coefficients of 𝛼, 𝛽, 𝛿 wolves and k denote 

the current iteration. 

Step 5: Update the coefficient vectors A and C using eq. (4.2) and eq. (4.3). 

Step 6:  Initialize the position of grey wolves again that go above the defined space. 

 

 

 

Figure 4.1 Description of GWO Algorithm 
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Figure 4.2 Flow diagram of GWO algorithm 

4.3 Whale Optimization Algorithm (WOA) 

 

Mirjalili et al. (2016) [115] proposed novel stochastic optimization algorithm 

named WOA. Humpback whales are the species of baleen whale and is one of the 

intelligent species having emotions. The most unique feature of these whales are 

that they are the biggest mammal in the world with adult length around 39-53 feet 

and weight 25-30 metric tons. Spindle cells named after their spindle-shaped bodies 

occur in brain are responsible for the social, intelligent and smart behavior of 

whales. Humpback whales have a most diverse hunting behavior, and the main 

source of their food is small fish. Whales hunt their prey with bubble-net feeding 

technique in which a group of whales encircle their prey and blows bubbles around 

them. In upward-spiral whale moves 12 meter down and form bubble in a spiral 

pattern towards the prey and dip up towards the surface while in double loop whale 

move around the prey in three different fashions, i.e., coral loop, lobtail, and capture 

loop. The algorithm works in three phases, i.e., searching, encircling, and hunting 

prey. When swimming around their prey, humpback whales can maneuver in a 

spiraling pattern or along a path that is gradually getting smaller and a probability 

factor p switches either of the two movement. Exploration and exploitation need to 

Start 

Initialize the random position of grey 
wolves (search agents) 

Initialize the coefficients A and C 

Evaluate the cost of each search agent and 
find first three best agent (𝑋𝛼 , 𝑋𝛽 , 𝑋𝛿) 

Update the position of each search agent 
towards best search agent 

Update the coefficient vectors A and C Reinitialize the position of search agents  
that go beyond the search space 

Stop 

Termination 
Criteria Achieved 

𝑋𝛼 represents the best  
optimal solution 

No 

Yes 
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be kept in balance as shown in Figure 4.3 through |𝐶̅|vector decreasing from 2 to 0 

over the iterations. In the initial phase when |𝐶̅| ≥ 1 then the whales explore around 

the random prey while as |𝐶̅|<1 then whale exploits the search space and swim 

around the best prey. The flow diagram of WOA is shown in Figure 4.4.      

The mathematical approach inspired from spiral bubble-net feeding movement of 

whales around prey is illustrated as: 

Step 1: Initiate the population of whales (search agents) arbitrarily within definite 

space: 

                                                   𝑌𝑖 = (𝑦𝑖 …………… . 𝑦𝑛)                                             (4.7)                                                                                                

where, n signifies the space dimension.   

Step 2: Evaluate the cost of each whale and depending on the problem 

(minimization or maximization) find the position of best whale (Y*).  

Step 3: Modify the constants G, H using the following equations: 

                                                 𝐺 = 2 ∗ 𝑏 ∗ 𝑟 − 𝑏                                                             (4.8)                                                                                         

                                                      𝐻 = 2 ∗ 𝑟                                                                       (4.9)                                                 

where, r is the random number having range [0,1], b is iteratively decreasing from 

2 to 0 and p is a random parameter lying between [0, 1]. 

 

Step 4: If p<0.5 and |H|≥1, random position of whale (𝑌𝑟𝑎𝑛𝑑) is selected in search 

space and position of whale is updated around it using the following equations: 

                                                 𝐷 = |𝐻 ∗ 𝑌𝑟𝑎𝑛𝑑 − 𝑌|                                                     (4.10)                                                                   

                                            𝑌(𝑡 + 1) = 𝑌𝑟𝑎𝑛𝑑 − 𝐺 ∗ 𝐷                                               (4.11)                                                        

else if, p<0.5 and |G|<1, then apprise the position of whale around the best search 

agent (𝑋∗) using the following eq. (4.7-4.8). 

                                                    𝐷 = |𝐻 ∗ 𝑌∗ − 𝑌|                                                       (4.12)                                                            

                                                𝑌(𝑡 + 1) = 𝑌∗ − 𝐺 ∗ 𝐷                                                (4.13)       

else, p>0.5, then update the position of whale using the following equation:  

                              𝑌(𝑡 + 1) = 𝐷′ ∙ 𝑒𝑑𝑙 ∙ cos(2𝜋𝑙) + 𝑌∗(𝑡)                                      (4.14)                                                                          

where, 𝐷′ = |𝑌∗(𝑡) − 𝑌(𝑡)| is the distance between the whale and best searched 

prey (𝑌∗(𝑡)), is the constant d maintains the logarithmic spiral shape and l is the 
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arbitrary number confined in the range [-1,1], ∙ is element by element 

multiplication. 

 

 

 

 

 

 

                                    

 

 

 

 

Figure 4.3 Description of WOA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Flow diagram of WOA 
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4.4 Moth Flame Optimization (MFO) 

 

Mirjalili et al. (2015) [116] proposed a novel population-based nature-inspired 

swarm intelligence algorithm named MFO. Moths are a paraphyletic group of 

insects with characteristics resembling those of butterflies. Around 160,000 species 

of moths, including nocturnal, crepuscular, and diurnal species, are known to occur 

in nature. Some moth larvae dig burrows in the earth and dwell there until they are 

adults, while others grow up in cocoons. By maintaining a constant angle with 

respect to the moon, the moth travels over a great distance in a straight line. 

However, the moth eventually converges to it after being entangled in a swirling 

path across the artificial lights. 

Figure 4.5 illustrates how the MFO algorithm simulates the movement of moths in 

a logarithmic spiral way across the flame to get the best solution. The search space 

is initially filled with a random population of moths, and their positions are spirally 

updated with regard to the flame while keeping in mind that the moth movement 

shouldn't go outside the search space. Moths can be thought to move in a hyper 

ellipse across the flame in every direction.  The moth’s movement in the direction 

of the flame causes the algorithm to become locked in local optimum and the 

position of each moth is updated in relation to its corresponding flame. This causes 

each moth to travel around diverse flames and lowers the likelihood of local optima 

stasis.  

                                  

Figure 4.5 Description of MFO algorithm 
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The position of flame is also modified during each iteration with regard to the 

optimal answer, which improves the algorithm's exploration capacity. The moth’s 

movement in several locations within the confined search space improves the level 

of exploration but reduces the exploitation capability. Exploration and exploitation 

need to be balanced in each optimization technique. To increase the algorithm's 

exploitation capabilities, an adaptive approach for estimating the number of flames 

is provided. The number of flames is reduced adaptively throughout an iteration 

ensuring that moths update their position with regard to the best updated flame in 

the preceding iterations. The flow diagram of MFO is shown in Figure 4.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          Figure 4.6 Flow diagram of MFO algorithm 

 

The mathematical approach of MFO is illustrated as: 

Step 1: Initializing the population of the moths (search agents) arbitrarily in the 

definite space as: 

                                   𝑃 = [

𝑝1,1
𝑝1,2 … … 𝑝1,𝑙

𝑝2,1
𝑝2,2 … … 𝑝2,𝑙

𝑝𝑚,1
𝑝𝑛,2 … … 𝑝𝑛,𝑙

]                                              (4.15)                                                                            

Start 
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Reinitialize the position of moths 
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Update the position of each moths 
with respect to their corresponding 

flame in a spiral fashion 
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Sort moths and flames based on their 
cost value 
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No 
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represent global optimal solution 

Initialize the random position of 
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where, m is the moth numbers and l are the dimensions.  

Step 2: Every individual moth’s position vector needs to be placed in in the cost 

function represented by OP to calculate the cost of moth. 

                                                         𝑂𝑃 =

[
 
 
 
𝑂𝑃1

𝑂𝑃2.
.

𝑂𝑃𝑛]
 
 
 

                                             (4.16) 

Step 3: Initialize the arbitrary matrix of flames identical to moths as follows: 

                                   𝐸 = [

𝑒1,1
𝑒1,2 … … 𝑒1,𝑙

𝑒2,1
𝑒2,2 … … 𝑒2,𝑙

𝑒𝑚,1
𝑒𝑛,2 … … 𝑒𝑛,𝑙

]                                              (4.17)                                                                        

Step 4: Place the flame's location vector in the cost function to calculate the cost of 

each flame and is expressed as: 

                                                     𝑂𝐸 =

[
 
 
 
𝑂𝐸1

𝑂𝐸2.
.

𝑂𝐸𝑚]
 
 
 

                                                 (4.18)                                                                   

Step 5: Sorting the moths and flames according to their cost. 

Step 6: Use the following equation to update the number of flames: 

                                   𝑓𝑙𝑎𝑚𝑒 𝑛𝑜.= 𝑟𝑜𝑢𝑛𝑑 (𝑅 − 𝑗 ∗
𝑅−1

𝑇
)                                       (4.19)                                                                                

where T is the maximum iteration, j denotes the current iteration, and R represents 

the maximum flames. 

Step 7: Update the position of every individual moth according to the corresponding 

flame in a spiral fashion as: 

                                                  𝑃𝑖 = 𝑆(𝑃𝑖, 𝐸𝑗)                                                                 (4.20)                                                                                           

where, Pi represents the i-th moth and Ej represents the j-th flame and S is the spiral 

function and a logarithmic function that is defined as:  

                                       𝑆(𝑃𝑖, 𝐸𝑗) = 𝐷𝑖 ∗ 𝑒𝑏𝑡 ∗ 𝑐𝑜𝑠(2𝜋𝑡) + 𝐸𝑗                              (4.21)                              
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where Di is the distance between the i-th moth and the j-th flame, b is a constant 

that determines the form of the logarithmic spiral, and t is a random value between 

[-1, 1] 

                                                  𝐷𝑖 = |𝐸𝑗 − 𝑃𝑖|                                                   (4.22)                                                                                                     

Step 8: Identify the moths leaving the search space and reposition them within the 

limits.  

Step 9: The algorithm terminates when the minimal error stopping criteria or 

maximum number of iterations is reached. Alternatively, repeat steps (2) to (9). 

Step 10: The best moth location reflects the universal ideal solution. 

 

4.5 Multi Verse Optimization (MVO) 

Mirjalili et-al. (2015) [117] presented MVO a nature-inspired stochastic 

optimization technique. MVO algorithm mathematically models the multi-verse 

theory of physics. As per the theory, there are multiple big bangs, and each 

individual big bang creates a new universe. Thus, there exists more than one 

universe along with the actual universe. The three main components of MVO 

algorithm are white, black, and worm holes. White holes are formed through the 

collision between parallel universes, black holes work differently with respect to 

white hole and absorbs most of the things with quite high gravitational force while 

wormholes join distinct parts of the universe. Multi-verse theory states that 

different universes interact with white, black and wormholes to attain stability. It 

has been observed that each universe has varying rise rates which control its 

extension throughout space. Traditionally, all optimization algorithms are governed 

through their exploration and exploitation capability. MVO utilizes white and black 

holes to better explore the search space while wormholes aid to exploit the search 

space. The algorithm initializes by creating a random population in the search space 

and over the course of iterations the objects in universe with high rate of inflation 

moves to the universe having low inflation rate through white/black holes. 

Although, all universe objects experiences teleportation via wormholes in direction 
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of best universe. Figure 4.7 shows the flow chart of MVO algorithm. The following 

steps mathematical approach of MVO algorithm is illustrated as follows: 

Step 1: Initialize the arbitrary population of universe (U) in the search space: 

                                                𝑈 = [

𝑦1
1 𝑦1

2 . 𝑦1
𝑑

𝑦2
1 𝑦2

2 . 𝑦2
𝑑

.
𝑦𝑛

1
.

𝑦𝑛
2

. .

. 𝑦𝑛
𝑑

]                                                (4.23) 

where, n signifies the number of universe and d denotes the parameters.   

Step 2: Initialize the parameters wormhole existence probability (WER) and 

travelling distance rate (TDR).  

Step 3: Sort the universe (SU) and evaluate the inflation rate (fitness) of all the 

universe and based on the inflation rate choose the best universe. 

Step 4: Normalize the inflation rate (NI) of the space.  

Step 5: Update the parameters WER and TDR with the following set of equations: 

                                             𝑊𝐸𝑃 = 𝑚𝑖𝑛 + 𝑙 ∗ (
𝑚𝑎𝑥−𝑚𝑖𝑛

𝐿
)                                     (4.24) 

                                                         𝑇𝐷𝑅 = 1 −
𝑙1 𝑝⁄

𝐿1 𝑝⁄                                                    (4.25) 

where, min and max are the constant parameters, l and L are the current iteration 

and the maximum iterations, p is a constant which defines the exploitation accuracy 

of the algorithm.  

Step 6: Use a roulette wheel selection method to move objects from a high inflation 

rate universe to a low inflation rate universe. 

Step 7: Transfer the objects from universe to best universe through wormhole 

tunnels. 

Step 8:  Determine the universes that go beyond the definite search space and 

reinitialize their positions.  

Step 9: Repeat step 3 until the stopping criteria is assured. 

Step 10: The position of best universe epitomizes the universal optimal solution. 
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Figure 4.7 Flow chart of MVO algorithm 

 

4.6 Results and Discussions 

 

All these metaheuristic techniques have been implemented to design PID and 

FOPID controllers for the trajectory tracking of a two-link robotic manipulator. The 

fixed step trajectory of step value 2 has been considered for tracking. A Weighted 

sum of the integral absolute error IAE of both links has been considered as the 

fitness function as shown in eq. (4.26) 

 

                                 𝑓 = 𝑤1 ∗ ∫ 𝑒1(𝑡)𝑑𝑡 + 𝑤2 ∗ ∫ 𝑒2(𝑡)𝑑𝑡                             (4.26) 

𝑤1 and 𝑤2 are the weights assigned to the IAE of both links with the values of 0.5 

each and 𝑒 = 𝜃 − 𝜃𝑑 , the difference between the actual and reference or desired 

trajectory. These metaheuristic algorithms are stochastic in nature they may yield 

different results for each run, thus statistical analysis is required. The statistical 

analysis has been performed by running each algorithm 10 times.  

Some parameters need to be considered for the implementation of the above-

mentioned metaheuristic algorithms to optimize the control techniques; these 

parameters are listed in table 4.1. The upper and lower bounds have been defined. 

Start 

Initialize the random population of 
universe (U) 

 
Initialize the parameters WER and TDR 

Sort the universe and evaluate the inflation rate 
(fitness) of universe and choose the best 

universe 

Normalize the inflation rate of the universe  

Reinitialize the universes 
that go beyond the search space 

Stop 

Termination 
Criteria Achieved 

Position of best universe 
represents the global optimal solution 

No 

Yes 

Update the parameters WER and TDR 

Transfer the objects through white/black 
and wormhole tunnel 
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Dimensions for PID are 6 and for FOPID it has been taken as 8. In PID controller 

we need to optimize the controller gains (KP1, KI1, KD1 and KP2, KI2, KD2) and in 

FOPID the controller gains (KP1, KI1, KD1, KP2, KI2, KD2, µ, λ) thus have dimensions 

6 and 8 respectively. The number of search agents has been considered as 30 and 

the number of iterations is 100.  

Table 4.1 Parameters for metaheuristic algorithms 

S. 

No 

Algorithm 

parameters 

 PID Values FOPID Values (𝜆𝑖, µ𝑖) 

1 Dimensions 6 8 

2 Upper Bounds [500,300,200,500,300,200] [500,300,200,500,300,200,1,1] 

3 Lower Bounds [0.5,0.5,0.5,0.5,0.5,0.5] [0.5,0.5,0.5,0.5,0.5,0.5,0,0] 

4 No of search 

agent  

30 30 

5 No of iterations 100 100 

6 No of runs 10 10 

 

Every run returns the optimum value of the controller gains with minimum fitness 

function. For these values, the lowest fitness value is considered as the optimum 

solution. Table 4.2 presents the gains of the PID controller for both links, the error 

value for each link, and the optimum fitness value. Statistical analysis has been 

carried out using statistical parameters like minimum, maximum, mean, median, 

and standard deviation of fitness value. Table 4.3 presents this statistical analysis 

expressing the values of these parameters. It is clear from these values the MFO 

has shown zero standard deviation.  The standard deviation shown by MVO and 

GWO is 0.0001. WOA has shown a high standard deviation of 0.00165.  Thus, the 

performance of MFO is found to be superior as compared to other algorithms.  

 

 



62 
 

 

Table 4.2.  PID Controller gains, error values and objective function values for 

various algorithms 

S. 

No. 

Algorithm Link 1 PID 

controller gains 

Link 2 PID 

controller gains 

IAE IAE1 Objectiv

e 

function  

1 GWO [499.9380, 

63.5886, 30.8274] 

[500, 296.0716, 

81.8123] 

0.1671 0.3771 0.2721 

2 WOA [500, 65.5025, 

30.1539] 

[500, 300, 

80.7489] 

0.1673 0.3772 0.2723 

3 MFO [499.9877, 

64.8214, 30.2722] 

[499.9898, 300, 

80.9017] 

0.1671 0.3770 0.2721 

4 MVO [500, 65.0899, 

30.1600] 

[499.5655, 300, 

80.7833] 

0.1671 0.3773 0.2722 

Table 4.3 Statistical parameters for PID Controller 

S. 

No. 

Algorithm Minimum Maximum Mean Median Standard Deviation 

1 GWO 0.2721 0.2724 0.2722 0.2722 0.0001 

2 WOA 0.2723 0.3185 0.2914 0.2930 0.0165 

3 MFO 0.2721 0.2721 0.2721 0.2721 0.0000 

4 MVO 0.2722 0.2724 0.2723 0.2723 0.0001 

FOPID provides more design flexibility by integrating fraction operators in 

derivative and control mode. Therefore, each FOPID has five gains to optimize 

using metaheuristic algorithms. Two different FOPID controllers have been 

designed for tracking the trajectory manipulator because of MIMO dynamics.  

Table 4.4 presents the gains of FOPID controller for both links, the error value for 

each link, fractional term values, and the optimum fitness value.  
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Table 4.4 FOPID Controller gains, error values and objective function values for 

various algorithms. 

S. 

No. 

Algorithm Link 1 

FOPID 

controller 

gains 

Link 2 

FOPID 

controller 

gains 

[𝜆𝑖, µ𝑖] IAE IAE1 Objective 

function 

value 

1 GWO [8.4380, 300, 

134.6961] 

[492.2880, 

300, 200] 

[1,1] 0.02846 0.3213 0.1749 

2 WOA [222.7478, 

300, 200] 

[500, 

300,200] 

[1,0.99

99] 

0.03593 0.3199 0.1779 

3 MFO [2.1608, 

299.9985, 

133.6903] 

[499.8116, 

300, 200] 

[1,1] 0.02657 0.3207 0.1736 

4 MVO [0.5, 300, 

132.8533] 

[499.9307, 

300, 

199.7294] 

[1,0.99

96] 

0.02672 0.3209 0.1738 

 

In FOPID the Statistical analysis has been carried out using the statistical 

parameters like minimum, maximum, mean, median, and standard deviation of the 

error values. Table 4.5 presents this statistical analysis expressing the values of 

these parameters  

Table 4.5 Statistical parameters for FOPID Controller 

S. 

No. 

Algorithm Minimum Maximum Mean Median Standard 

Deviation 

1 GWO 0.1749 0.1793 0.1787 0.1791 0.0013 

2 WOA 0.1779 0.1796 0.1794 0.1796 0.0005 

3 MFO 0.1736 0.1784 0.1767 0.1779 0.0020 

4 MVO 0.1738 0.1792 0.1770 0.1788 0.0025 
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It is clear from these values the MFO has given the lowest fitness value and WOA 

has returned the highest fitness value. Considering the fitness value, the 

performance of MFO is found to be superior as compared to other algorithms. A 

non-parametric statistical test known as Friedman’s test has been performed to 

evaluate the performance of these metaheuristic optimization algorithms [118]. 

Each of these algorithms has been assigned a Friedman ranking utilizing that final 

ranking has been assigned [119]. Table 4.6 shows the Friedman ranking and final 

ranking of every algorithm implemented on PID and FOPID controllers.  

 

Table 4.6 Ranking of the metaheuristic algorithms on PID and FOPID controller 

designed according to the Friedman test. 

S. 

No. 

Algorithms PID Controller FOPID Controller  

  Friedman 

Ranking 

Final 

Ranking 

 Friedman 

Ranking 

Final 

Ranking 

1 GWO 2.4 2 2.8 3 

2 WOA 3.6 4 3.9 4 

3 MFO 1 1 1.4 1 

4 MVO 3 3 1.9 2 

 

 

Figure 4.8 Friedman’s Ranking for PID controller 
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Figure 4.9 Friedman’s Ranking for FOPID Controller 

 

Figure 4.8 and Figure 4.9 present Friedman’s ranking of the metaheuristic 

algorithms implemented in tuning the PID and FOPID controllers for tracking the 

trajectory of a robotic manipulator. The obtained Friedman’s ranking has been 

approximated and a final ranking has been assigned to each algorithm. It is evident 

from these rankings that the algorithm MFO performs the best and algorithm WOA 

performs the worst for both PID and FOPID control schemes. So MFO attains a 

rank of 1 and WOA attains 4. The performance of GWO is superior to MVO in the 

PID controller, thus GWO attains a rank of 2 and MVO achieves the rank of 3 as 

shown in Figure 4.8. The performance of MVO is superior to GWO in the FOPID 

controller; thus MVO attains a rank of 2 and GWO achieves the rank of 3 as shown 

in Figure 4.9. These ranks are clearly indicative of the performance of the algorithm 

on tuning the controllers to achieve the reference trajectory.   

 

The convergence curve depicts the optimal cost function value achieved with the 

iterations. Figure 4.10 shows the convergence curve of these implemented 

metaheuristic algorithms for the PID control technique. Figure 4.11 shows the 
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convergence curve of these implemented metaheuristic algorithms for the FOPID 

control technique.   

 

                 Figure 4.10 Convergence curve of the algorithms for PID controller  

 

 

           Figure 4.11 Convergence curve of the algorithms for FOPID controller  

 

In the PID controller convergence curve, the MFO converges to the lowest fitness 

value while WOA converges to the highest fitness value, this signifies the best 



67 
 

 

performance of MFO and worst performance of WOA in the tracking the trajectory 

of a robotic manipulator using metaheuristic algorithms based PID controller. In 

the FOPID controller convergence curve, the MFO converges to the lowest fitness 

value while WOA converges to the highest fitness value, but the performance of 

WOA has been improved in comparison to PID control. This validates the best 

performance of MFO and worst performance of WOA in the trajectory control of 

robotic manipulators using metaheuristic algorithms based FOPID controller.   

 

A fixed step of value 2 has been given as a reference to track the trajectories of both 

links of a two-link robotic manipulator. Fast settling and no overshoots in the 

trajectories have been the desired characteristics in the tracked trajectories of both 

links. Figure 4.12 shows the trajectory control by the PID controller and FOPID 

controller using GWO. This algorithm has tracked the reference trajectory in both 

control schemes, but PID has shown overshoots.  It is clear from the figures that 

FOPID has shown a low error value in the positions of both the links as compared 

to the PID controller and has completely reduced overshoot in link 2 and reduced 

it in link 1.  

 

 

                                Figure 4.12 GWO tuned PID and FOPID controller response                                        
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Figure 4.13 depicts the trajectory control by the PID and FOPID controller using 

WOA. For link 1 PID has shown more overshot as compared to GWO. The FOPID 

has reduced the overshoots. WOA has been able to track the reference trajectory 

but has shown a high fitness function value.  

 

Figure 4.13 WOA tuned PID and FOPID controller response 

 

Figure 4.14 shows the trajectory control by PID and FOPID controller using MFO 

and Figure 4.15 presents the trajectory control by PID and FOPID controller using 

MVO. The performance of these algorithms is better for FOPID as compared to 

PID. The overshoots in the trajectory of the links of robotic manipulators have been 

removed by the FOPID controller but the settling time is increased a bit for the 

second link while link 1 is able to settle instantly.  PID and FOPID controllers are 

robust but gain setting for complex systems like robotic manipulator is challenging. 

The use of metaheuristic algorithms felicitates this problem in the design of 

efficient control. Considering the stochastic nature of such algorithms, different 

runs have been taken for finding the optimum solution. FOPID has reduced the 

error but increased the settling time of the angular position of the second link of the 

robotic manipulator. So, there is a trade-off between the error value and settling 

time for the angular displacement of link 2. 
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Figure 4.14 MFO tuned PID and FOPID controller response 

 

 

Figure 4.15 MVO tuned PID and FOPID controller response 
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Chapter 5 

 

Optimization and statistical analysis of control techniques for 

nonlinear model 

 

5.1 Introduction 
 

The optimization algorithms have given more flexibility in the design of effective 

control schemes to the researchers. These techniques help in optimizing the control 

laws. Because of the stochastic nature of these algorithms statistical analysis is 

required to assess the effectiveness of such algorithms. In this chapter the trajectory 

tracking has been achieved using PID controller and following recent metaheuristic 

algorithms have been employed to optimize the controller parameters providing a 

minimum fitness function value. 

 

 Arithmetic Optimization Algorithm (AOA)  

 Atom Search optimization (ASO)  

 Spotted Hyena Optimizer (SHO)         

 Sooty Tern Optimization (STO) 

 

Further, STO algorithms has been modified by combining it with PSO and a novel 

hybrid algorithm STOPSO has been proposed to expand the exploitation capability 

of STO. Each of these algorithms is inspired by a phenomenon existing in nature 

like swarm intelligence, mathematical operators, and the atomic structure of 

molecules. Taking this inspiration in consideration these algorithms can be 

modeled and expressed in a mathematical approach [60]. The description and 

mathematical approach for these algorithms and their implementation in tracking 

the trajectory of a double-link robotic manipulator has been presented in the next 

sections.  
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5.2 Arithmetic Optimization Algorithm (AOA)  

Laith Abualigah et.al. (2021) [120] presented a novel optimization algorithm 

named AOA inspired by fundamental operations in mathematics. It makes use of 

mathematical operations like multiplication, division, addition, and subtraction's 

distribution pattern. The utilization of different basic arithmetic operations in 

unravelling the complicated arithmetic problems is the main inspiration of AOA. It 

is implemented in three stages: Initialization phase: Each iteration results in the best 

answer, starting with a collection of randomly initiated solutions. The fitness value 

at the tth iteration is obtained using the mathematical optimizer function (MOA). In 

the exploration phase the division (D) and multiplication (M) mathematical 

operators search for the best answers. The fitness value is determined by the Math 

Optimizer Probability (MOP). In the exploitation phase the addition (A) and 

subtraction (S) mathematical operators exploit the solution for global optimum 

answer. The flow chart of AOA has been shown in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Flow chart of AOA 
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The mathematical modelling of AOA algorithm is outlined in the following steps. 

Step 1: Initiate the AOA parameters α, µ, and the randomly generated candidate 

solution (X) in the search space: 

                                               𝑋 = [

𝑥1,1 𝑥1,2
. 𝑥1,𝑛

𝑥2,1 𝑥2,2
. 𝑥2,𝑛

𝑥𝑁,1

.
𝑥𝑁,2

. .
. 𝑥𝑁,𝑛

]                                  (5.1) 

where, n signifies the number of solutions. 

Step 2: Appraise the fitness value of each function using the functions MOA and 

MOP. 

Step 3: Calculate and update the MOA function. 

                                                𝑀𝑂𝐴(𝐶𝐼) = 𝑀𝑖𝑛 + 𝐶𝐼(
𝑀𝑎𝑥−𝑀𝑖𝑛

𝑀𝐼
)                         (5.2) 

Where, 𝐶𝐼 is the running iteration, 𝑀𝐼 is the maximum iteration, 𝑀𝑎𝑥 and 𝑀𝑖𝑛 are 

the maximum and minimum values of MOA function. 

Step 4: Calculate and update the MOP function. 

                                                𝑀𝑂𝑃(𝐶𝐼) = 1 − 𝐶𝐼(
𝐶𝐼

1
𝛼

𝑀𝐼

1
𝛼

)                                         (5.3)  

Where, 𝐶𝐼 is running t iteration, 𝑀𝐼 is maximum iteration, and α is a constant used 

to exploit the solutions. 

Step 5: Generate the random values of variables r1, r2, r3 in between [0, 1]. These 

variables determine the exploration and exploitation phase.   

if r1>MOA 

The exploration takes place 

if r2>0.5 then 

(1) The mathematical divide operation D needs to be applied 

                               Implement rule 1 in eq. (5.4) to update ith solution 

 else 

(2) The mathematical multiplication operator M. is applied 

                              Implement rule 2 in eq. (5.4) to update ith solution 

                         end if 
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  else 

The exploitation takes place 

if r3>0.5 then 

(1) The mathematical subtraction operator S is applied 

                            Implement rule 1 in eq. (5.5) to update ith solution 

 else 

(2) The mathematical addition operator A is applied 

                           Implement rule 2 in eq. (5.5) to update ith solution 

                         end if 

                        end if 

end for 

CI= CI+1 

end while 

 

Step 6: Update the solutions using the following set of equations: 

 

𝑥𝑖,𝑗(𝐶𝐼 + 1) =   {
𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ (𝑀𝑂𝑃 + 𝜀) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × µ + 𝐿𝐵𝑗) , 𝑟2 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) × 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × µ + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  (5.4) 

𝑥𝑖,𝑗(𝐶𝐼 + 1) = {
𝑏𝑒𝑠𝑡(𝑥𝑗) − 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × µ + 𝐿𝐵𝑗) ,    𝑟3 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) + 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × µ + 𝐿𝐵𝑗) ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}          (5.5) 

Where the values 𝑈𝐵𝑗 and 𝐿𝐵𝑗 is the upper and lower bound value of the jth position. 

 

Step 7: Reiterate step 6 to either the maximum iterations are reached, or closure 

criteria is satisfied. 

 

Step 8: The candidate’s best solution represents the global optimal solution.  
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5.3 Atom Search optimization (ASO) 

Weiguo Zhao et.al. (2019) [121] proposed a novel, physics-based metaheuristic 

algorithm ASO inspired by dynamics of basic molecular structure in atoms. ASO 

begins the optimization process by producing a set of solutions randomly. During 

each iteration the positions and velocities of each atoms including the best atom, is 

updated. There are two forces that cause the atom’s acceleration.  The first one is 

L-J potential’s interaction that is the vector summation of the attraction and 

repulsion forces between atoms. Second is the bond-length potential’s constraint 

force that is defined as the difference in weighted positions between every atom 

and the optimum atom. The entire updating and computation process is carried out 

interactively up till a stopping criteria is fulfilled. The best atom’s fitness and 

position represents the optimum value. An initial set of atoms solutions with their 

velocities are produced at random in an ASO. According to its mass, each atom's 

location within the search area points to a solution. As per the distance between 

each atom in the population there is tendency of either attracting or repelling one 

another, which will cause the lighter atoms to gravitate towards the heavier ones. 

The flow chart of ASO has been shown in Figure 5.2. 

 

 

 

 

 

 

 

 

 

 

 

 

                                          Figure 5.2. Flow chart of ASO 
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The mathematical modelling of the ASO is outlined in the following steps. 

Step 1: Initiate a random set of atoms solution (X) within the search space with 

velocity v.  

                                                    𝑥𝑖 = (𝑥𝑖 …………… . 𝑥𝑛)                                  (5.6)  

Where n denotes the number of atoms.                                    

Step 2: Evaluate the fitness value of each function using the following equations. 

                             𝐹𝑖𝑗(𝑡) = −ƞ(𝑡)[2 (ℎ𝑖𝑗(𝑡))
13

− (ℎ𝑖𝑗(𝑡))
7

]                               (5.7) 

Where ƞ(𝑡), depth function that adjusts the attractive or repulsive force region, 

defined as following. 

                                               ƞ(𝑡) = 𝛼(1 −
𝑡−1

𝑇
)3𝑒

−20𝑡

𝑇                                               (5.8) 

Where 𝛼 is the depth weight and T represents the maximum number of iterations 

considered. 

Step 3: Compare the fitness value obtained with 𝐹𝑖𝑡𝑏𝑒𝑠𝑡. 

If 𝐹𝑖𝑡𝑖 <  𝐹𝑖𝑡𝑏𝑒𝑠𝑡 then 

      𝐹𝑖𝑡𝑖 =𝐹𝑖𝑡𝑏𝑒𝑠𝑡 

       𝑋𝑏𝑒𝑠𝑡 = 𝑋𝑖 

 End if 

Step 4: Calculate the mass equations and determine the neighbors using the 

following equations. 

                                               𝑀𝑖(𝑡) = 𝑒
−

𝐹𝑖𝑡𝑖−𝐹𝑖𝑡𝑏𝑒𝑠𝑡

𝐹𝑖𝑡𝑤𝑜𝑟𝑠𝑡−𝐹𝑖𝑡𝑏𝑒𝑠𝑡                                      (5.9) 

                                                   𝑚𝑖(𝑡) =
𝑀𝑖(𝑡)

∑ 𝑀𝑗(𝑡)
𝑁
𝑗=1

                                                    (5.10) 

                                                       𝑃(𝑡) = 𝑁 − (𝑁 − 2)√
𝑡

𝑇
                              (5.11) 

Step 5: Calculate the forces (interaction and constraint) using the following 

equations. 
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                                             𝐹𝑖(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗𝑗ԑ𝐾𝑏𝑒𝑠𝑡 𝐹𝑖𝑗(𝑡)                               (5.12) 

                                  𝐺𝑑
𝑖(𝑡) = 𝛾(𝑡)(𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡))                                  (5.13) 

                                                𝛾(𝑡) = 𝛽𝑒−
20𝑡

𝑇                                                    (5.14) 

Step 6: Apprise the positions and velocities of atoms using the following equations. 

                                    𝑣𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖

𝑑𝑣𝑖
𝑑(𝑡) + 𝑎𝑖

𝑡(𝑡)                                (5.15) 

                                            𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑 + 𝑣𝑖
𝑡(𝑡)                                         (5.16) 

Step 7: Reiterate till step 6 until the dissolution criteria is satisfied. 

Step 8: The atom’s best solution represents the global optimal solution.  

 

5.4 Spotted Hyena Optimizer (SHO) 

Gaurav Dhiman et.al. (2017) [122] presented SHO, a metaheuristic algorithm 

simulating the hunting strategy, social interaction and accommodating behavior of 

spotted hyenas. Searching for prey, surrounding, and confronting prey are the three 

basic actions of SHO, which are represented mathematically. The intended action 

or goal in an encircling activity is the best solution, while the remaining search 

agents can alter their placements in view of the discovered best solution. Spotted 

hyenas are able to locate and encircle their prey. Spotted hyenas have a tendency to 

detect the location of their and encircle it.  Target prey’s location is considered as 

the current optimum solution. According to this current best solution, other 

elements update their positions. The spotted hyenas use the best search agent as a 

benchmark for their hunting approach, and they adjust the placements of other 

search agents in a cluster of optimum solutions. The process flow of ASO is shown 

in Figure 5.3. The mathematical description and modelling of the SHO algorithm 

is outlined in the below steps. 
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Figure 5.3. Flow chart of SHO 

 

Step 1: The position of spotted hyenas (search agents) is initialized randomly in 

the search space: 

                                                        𝑃𝑖 = (𝑝𝑖 …………… . 𝑝𝑛)                         (5.17)                                                                    

 where n represents the space dimension. i = 1, 2, . . ., n  

Step 2: Determine the position of prey and spotted hyenas using the following 

equations. The coefficients h, B, N, and E are initialized.  

                                                 𝐷ℎ = |𝐺. 𝑃𝑝(𝑗) − 𝑃(𝑗)|                                    (5.18) 

                                               𝑃(𝑗 + 1) = 𝑃𝑝(𝑗) − 𝐸. 𝐷ℎ                                 (5.19) 

𝐷ℎ - Prey and spotted hyena’s distance 

𝐺, 𝐸 – Coefficient vectors    

 j- Current iteration  

 𝑃𝑝 , 𝑃- Position of prey and spotted hyena. 

Start 

Initialize the random population of 
spotted hyena (P) 

Initialize the parameters h, B, E, and N 

Evaluate the fitness of each search agent and 
choose the best 

 Update the position of each search agent 

Reinitialize the search agents 
that go beyond the search space 

Stop 

Termination 
Criteria Achieved 

Return the best optimal 
solution 

No 

Yes 

 
Calculate the fitness values of updated agents 

Update the group of spotted hyenas Ch to updated 
search agent fitness value 
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                                                        𝐺 = 2. 𝑟1                                                   (5.20) 

                                                   𝐸 = 2ℎ. 𝑟2 − ℎ                                               (5.21) 

𝑟1, 𝑟2 are random vectors in between [0,1] 

                                             ℎ = 5 − [𝐼𝑡𝑟 × (
5

𝑀𝐼𝑡𝑟
)]                                        (5.22) 

To maintain a proper equilibrium between two main processes of optimization i.e. 

the exploration and exploitation, ℎ is decreased linearly from a constant value to 0.  

Step 3:  The fitness of all spotted hyenas is evaluated, and the search agent closed 

to optimum or nearest to prey is explored. To obtain satisfactory performance the 

clusters are defined using the following equations. 

                                                𝐶ℎ = 𝑃𝑘 + 𝑃𝑘+1 + ⋯ 𝑃𝑘+𝑁                              (5.23) 

                                 𝑁 = 𝐶𝑜𝑢𝑛𝑡𝑛(𝑃ℎ, 𝑃ℎ+1, 𝑃ℎ+2, …… . . (𝑃ℎ+𝑀))                  (5.24) 

𝐶ℎ is a cluster formed by a group of spotted hyenas 

𝑁 ia s number of spotted hyenas. 

𝑃ℎ is the position of the first optimal-spotted hyena. 

𝑃𝑘 is the position of various other spotted hyenas.  

Step 4: Apprise the positions of the search agents using the below equation.  

                                                 𝑃(𝑗 + 1) =
𝐶ℎ

𝑁
                                                  (5.25) 

Step 5: Reinitiate the position of spotted hyenas that go beyond the defined space. 

Step 6: Repeat till step 4 if termination criteria is not satisfied.  

Step 7: The best position of spotted hyenas represents the global optimal solution. 

 

5.5 Sooty Tern Optimization (STO) 

Gaurav Dhiman et.al. (2019) [123] proposed a novel bio-inspired stochastic 

optimization algorithm STO that replicates the sooty tern's natural movement and 

attacking patterns. Sooty terns migrate in groups during migration. These sooty 

terns have a specific behavior that avoids collision among them and provides 
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guidance while migrating.  The sooty terns' starting locations are distinct to prevent 

collisions. A sooty tern having low fitness as compared to other sooty terns leads a 

group of individual’s sooty terns in the direction of the sooty tern with the 

best survival. Other sooty terns adjust their starting positions based on the position 

of the best fit sooty tern. Migration and attacking manners are the two main 

components of the STO algorithm. In the exploration behavior sooty tern satisfies 

the conditions like collision avoidance utilizing a function SA, Convergence in the 

best neighbor’s direction and updating their positions as per the optimum search 

agent. In the attacking approach (exploitation) while attacking on the prey, sooty 

terns generate the spiral behavior in the air. Figure 5.4 presents the flow chart of 

STO.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Flow chart of STO 

The migration and attacking pattern of sooty terns can be mathematically modeled 

by the following steps. 

Step 1: The position of sooty terns (search agents) is initialized randomly in the 

search space: 

                                              𝑌⃗ 𝑠𝑡 = (𝑦𝑖, 𝑦2, ………𝑦𝑛)                                     (5.26) 

where n represents the space dimension. i = 1, 2, . . ., n  

Start 

Initialize the random population of 
Search agent (P) 

Initialize the parameters 𝑆𝐴 and 𝐶B 

Evaluate the fitness of each search agent  and 
choose the best agent 

Update the positions of search agents 

Reinitialize the agents 
that go beyond the search space 

Stop 

Termination 
Criteria Achieved 

Position of best agent gives the 
global optimal solution 

No 

Yes 

Update the parameters 𝑆𝐴 and 𝐶B 

Calculate the fitness value of each 
search agent 
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Step 2: Determine the position of sooty terns and initialize the coefficients and 

parameters 𝑆𝑎 and  𝐶𝑏.  

                                                     𝐶 𝑠𝑡 = 𝑆𝑎 × 𝑌⃗ 𝑠𝑡(𝑧)                                        (5.27) 

                                                𝑆𝑎 = 𝐶𝑓 − (𝑧 × (
𝐶𝑓

𝑀𝑖𝑡𝑟
))                                     (5.28) 

𝐶 𝑠𝑡 position of sooty terns having collision avoidance.   

𝑌⃗ 𝑠𝑡(𝑧)- current position of sooty terns. 

𝐶𝑓 – a variable used to avoid collision is decreased to 0.  

Z  = 1, 2, . . ., 𝑀𝑖𝑡𝑟.  

Step 3: Evaluate the fitness of every search agent using the following equations.  

                                           𝑀⃗⃗ 𝑠𝑡 = 𝐶𝑏 × (𝑌⃗ 𝑏𝑠𝑡(𝑧) − 𝑌⃗ 𝑏𝑠𝑡(𝑧))                            (5.29) 

                                                             𝐶𝑏 = 0.5 × 𝑟                                         (5.30) 

𝑀⃗⃗ 𝑠𝑡 expresses the search agent’s location, 𝐶𝑏 is a constant used to improve the 

exploration, 𝑟 is a random number between [0,1]. 

                                                           𝐷⃗⃗ 𝑠𝑡 = 𝐶 𝑠𝑡 + 𝑀⃗⃗ 𝑠𝑡                                      (5.31) 

𝐷⃗⃗ 𝑠𝑡 shows the distance between search agent and best fit agent. 

Step 4: Each search agent’s position can be updated using the following equations. 

                                                    𝑥1 = 𝑟𝑎𝑑𝑖𝑢𝑠 × sin(𝑙)                                            (5.32) 

                                                    𝑥2 = 𝑟𝑎𝑑𝑖𝑢𝑠 × cos(𝑙)                                       (5.33) 

                                                         𝑥3 = 𝑟𝑎𝑑𝑖𝑢𝑠 × 𝑙                                                (5.34) 

                                                           𝑟 = 𝑢 × 𝑒𝑘𝑣                                             (5.35) 

𝑟𝑎𝑑𝑖𝑢𝑠 – radius of spiral turn 

𝑙 – variable in the range of [0 ≤ k ≤ 2π] 
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𝑢, 𝑣 – constant used to define the spiral shape. 

                                  𝑌⃗ 𝑠𝑡(𝑧) = (𝐷⃗⃗ 𝑠𝑡 × (𝑥1 + 𝑥2 + 𝑥3)) × 𝑌𝑏𝑠𝑡(𝑧)                      (5.36)  

Step 5: Update the parameters 𝑆𝑎 and  𝐶𝑏.  

Step 6: Repeat steps 2 to 6 until the stopping criterion is satisfied. 

Step 7: Best position of the sooty tern gives the optimal solution.  

5.6 Novel Hybrid STOPSO Algorithm. 

5.6.1 Novelty of Work  

The main contribution of the proposed study can be described as follows: 

 For controlling the trajectory of a robotic manipulator, a hybrid algorithm 

STOPSO algorithm is proposed.  

 By combining the exploitation capacity of PSO, the STO's exploitation 

capability is considerably enhanced. As a consequence, controller parameters 

are convergent to actual values with the least amount of error. 

 Convergence analysis, robustness, reliability, and statistics analysis are the 

parameters to evaluate the trajectory tracking performance of proposed STOPSO 

algorithm for  a robotic manipulator and compared with the previous algorithms 

existing in the literature.  

5.6.2 Hybrid STOPSO Algorithm. 

This section describes the proposed hybrid STOPSO algorithm briefly. The 

performance of any metaheuristic algorithm is dependent on its capabilities of 

exploring the solutions discovering the global optimal solution. As per NFL 

theorem none of the metaheuristic algorithms can offer the best solution for 

every challenging and complex problem. Some algorithms have a tendency to get 

stuck in local best solution while some algorithms have a poor rate of convergence. 

Maintaining a balance between exploration and exploitation for the optimization 

algorithms is a very difficult task. STO have high exploration abilities, and sooty 
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terns do this by adjusting their positions in relation to the positions of other birds to 

prevent collisions as they hunt for the optimal solution. In the exploitation, 

algorithms have tendency to get detained in local optimal solution because sooty 

terns create a spiral path in air for attacking the prey. PSO has better exploitation 

capability and poor exploration capability. So, by integrating the STO algorithm 

with the PSO algorithm, the exploitation potential of STO can be increased by 

combining the qualities of two algorithms in the hybrid form. The STO is employed 

initially to identify the optimal solution, and then the PSO algorithm's exploitation 

capabilities are used to further enhance the outcomes and get the optimal solution 

overall. The proposed hybrid STOSPO algorithm has been mathematically modeled 

as follows: 

 Step 1: Set the sooty terns' initial positions in the search area at random.                                        

                                           𝑋 𝑠 = (𝑥 1, 𝑥 2, …………………𝑥 𝑛)                                   (5.37) 

where, n signifies the space dimension.   

Step 2: Initialize the velocities of search agents in the random search space. 

                                           𝑉⃗ 𝑠 = (𝑣 1, 𝑣 2, …………………𝑣 𝑛)                              (5.38) 

Step 3:  The position of best sooty tern (𝑥 𝑏𝑠) that indicates the best search agent, is 

determined by evaluating the fitness of all search agents in terms of minimization 

or maximization, respectively. 

Step 4: The parameters SA, CB, w are initialized that permits the search agents to 

travel in the search space. These terms are defined as follows: 

                                        𝑆𝐴 = 𝐶𝑓 − (𝑧 ∗ (
𝐶𝑓

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
⁄ ))                              (5.39) 

                                𝑤 = 𝑤𝑚𝑖𝑛 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) ∗
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
                          (5.40) 

where, 𝑤𝑚𝑖𝑛, 𝑤𝑚𝑎𝑥 are the minimum and maximum value of inertia weight, 𝐶𝑓 is 

the controlling variable that is decreased linearly from 𝐶𝑓 to zero, 𝑖𝑡𝑒𝑟 is the current 

iteration and 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is the maximum number of iterations.  

                                   z= 0, 1, 2, 3, ……………………….., 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠.  
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                                                     𝐶𝐵 = 0.5 ∗ 𝑅𝑎𝑛𝑑                                                        (5.41) 

where, 𝑅𝑎𝑛𝑑 is the random number in the range [0,1].      

Step 5: Using the following equations, search agents' positions are updated:  

                                                            𝑥′ = 𝑅𝑎𝑑𝑖𝑜𝑢𝑠 ∗ sin(𝑖)                                     (5.42) 

                                                            𝑦′ = 𝑅𝑎𝑑𝑖𝑜𝑢𝑠 ∗ cos(𝑖)                                    (5.43) 

                                                             𝑧′ = 𝑅𝑎𝑑𝑖𝑜𝑢𝑠 ∗ 𝑖                                               (5.44) 

                                            𝑟 = 𝑢 ∗ 𝑒𝑘𝑣                                                           (5.45) 

where, 𝑅𝑎𝑑𝑖𝑜𝑢𝑠 is the radius of the spiral movement, i is the variable ranging [0 ≤

𝑘 ≤ 2𝜋], u and v are the constant terms. 

                                               𝐶 𝑠 = 𝑆𝐴 ∗ 𝑥𝑆                                                      (5.46)                                          

                                  𝑀⃗⃗ 𝑠 = 𝐶𝐵 ∗ (𝑥 𝑏𝑠 − 𝑥 𝑠)                                                     (5.47) 

                                          𝐷⃗⃗ 𝑠 = 𝐶 𝑆 + 𝑀⃗⃗ 𝑠                                                            (5.48) 

                          𝑥 𝑠 = (𝐷⃗⃗ 𝑠 ∗ (𝑥′ + 𝑦′ + 𝑧′)) ∗ 𝑥 𝑏𝑠                                           (5.49) 

Step 6: The velocity of search agents is adjusted depending on the position of the 

optimum search agent using the following equations: 

                     𝑉⃗ 𝑠(𝑖𝑡𝑒𝑟 + 1) = 𝑤 ∗ 𝑉⃗ 𝑠(𝑖𝑡𝑒𝑟) + 𝑐1 ∗ 𝑟1 ∗ (𝑥 𝑏𝑠 − 𝑋 𝑠(𝑖𝑡𝑒𝑟))          (5.50) 

where, 𝑐1 is acceleration parameter and 𝑟1 is the random number ranging in [0, 1]   

Step 7: Apprise the position of search agents as follows: 

                     𝑋 𝑠(𝑖𝑡𝑒𝑟 + 1) = 𝑋 𝑠(𝑖𝑡𝑒𝑟) + 𝑉⃗ 𝑠(𝑖𝑡𝑒𝑟 + 1)                                   (5.51) 

Step 8: 𝑆𝐴 and 𝐶𝐵 the dynamic terms are updated. 

Step 9:  The search agents whose positions are going beyond the search space need 

to be reinitialized. 

Step 10: If the termination requirements, such as the minimal error or total 

number of iterations, are met, the algorithm is ended. Instead, repeat step (3) (9). 

Step 11: The best search agent’s position (𝑥 𝑏𝑠) denotes the global optimal solution. 
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            Figure 5.5 Flow chart of proposed hybrid STOPSO algorithm 

 

5.7 Results and Discussion  
 

For trajectory tracking of a nonlinear robotic manipulator having two links using 

PID controller, all the above metaheuristic algorithms (ASO, AOA, STO, SHO, 

and Hybrid STOPSO) have been employed and tuned the controller parameters to 

an optimum value. Because the robotic manipulator's MIMO dynamics two distinct 

PID controllers have been designed. Each of these techniques has optimized the 

cost function and successfully tracked the reference trajectory. The weighted sum 

of ITAE shown in eq. (5.52) has been considered as the performance index.  

                                 𝑓 = 𝑤1 ∗ ∫ 𝑒1(𝑡)𝑡𝑑𝑡 + 𝑤2 ∗ ∫ 𝑒2(𝑡)𝑡𝑑𝑡                                  (5.52)      

𝑤1 and 𝑤2 are the weights assigned to fitness of both the links having values 0.5.  

The aim of implementation of these algorithms is to tune the PID controller for 

reference trajectory tracking. Thus, these algorithms return the optimum controller 

gains and minimized errors and fitness value. For tracking a trajectory, a reference 
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is required, hence a cubic polynomial trajectory as shown in eq. (5.53) has been 

considered as the reference. 

                                  𝜃(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3                                    (5.53) 

Figure 5.6 and Figure 5.7 shows the reference trajectory and trajectory generation 

in SIMULINK.  

 

Figure 5.6. Polynomial Reference trajectory 

 

 

 

 

 

 

 

 

 

Figure 5.7 Reference trajectory generation in SIMULINK 

 

Table 5.1 below presents the parameters considered for the implementation of the 

above metaheuristic algorithms. Each of these techniques has 30 search agents, and 
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100 iterations. Two separate PID controllers have been designed so 6 gain 

parameters need to tune thus, the dimension in the algorithm has been considered 

as 6. The upper and lower bounds have been assigned to each of the gain 

parameters.   

Table 5.1 Values of the parameters considered for simulation 

S.No Algorithm 

parameters 

Description  PID Values 

1 Dimensions Number of variables 6 

2 Upper Bounds Upper constraint on gain [200,100,50,100,100,10] 

3 Lower Bounds Lower constraint on gain [2, 2, 2, 2, 2, 2] 

4 No of search agent  Population size 30 

5 No of iterations Iterations taken 100 

6 Number of Runs Number of algorithm’s run 10 

 

Every run returns the optimum value of the controller gains with minimum fitness 

function. For these values, the lowest fitness value is considered as the optimum 

solution. Table 5.2 presents the PID controller’s gain for both links, the error value 

for each link, and the optimum fitness value.  

Table 5.2 Controller gains and objective function values for metaheuristic 

algorithms 

 

S. 

No. 

Algorithm Link 1 PID controller 

gains 

Link 2 PID controller gains Objective 

function 

value 

1 ASO [197.08264,99.8055, 

3.3841] 

[95.4870,92.845, 4.636] 0.04970 

2 AOA [200, 100, 2] [100, 100, 

8.74633118938909] 

0.04607 

3 STO [200, 100, 2] [99.9750, 90.9847, 8.8450] 0.04573 
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4 SHO [186.648660502925, 

100, 2] 

[100, 100, 2] 0.04944 

5 Hybrid 

STOPSO 

[200, 100, 2] [100, 100, 8.80909] 0.04541 

 

 

Because of the stochastic nature of such metaheuristic algorithms, a statistical 

analysis has been performed by running every algorithm 10 times. Statistical 

analysis has been carried out using a measure of central tendencies. Table 5.3 

presents these measures obtained during the statistical analysis. The ASO algorithm 

has shown a minimum fitness value of 0.04970 and a standard deviation of 0.09732, 

the AOA algorithm has shown a minimum fitness of 0.04607 with a standard 

deviation of 0.06423. The algorithm STO has shown an improved fitness value of 

0.04573 and a standard deviation of 0.08570. The SHO has shown a minimum 

value of 0.0494 with the highest standard deviation of 0.28495.  Further to improve 

the controller’s performance, the proposed STOPSO algorithm has been 

implemented that improved the fitness value with the value of standard deviation 

as 0.0002. This statistical analysis validates the performance of these algorithms 

and shows that the hybrid STOPSO has performed the best and returned the 

minimum fitness value.  

 

Table 5.3 Statistical Analysis of the fitness function in 10 runs. 

 

S.No Algorithm Minimum Maximum Mean Median Standard 

Deviation 

1  ASO 0.04970 0.05264 0.05126 0.05105 0.09732 

2  AOA 0.04607 0.04821 0.04800 0.04822 0.06423 

3  STO 0.04573 0.04822 0.04659 0.04629 0.08570 

4  SHO   0.04944 0.05930 0.05439 0.05435 0.28495 

5 Hybrid 

STOPSO 

0.04541 0.0461 0.04601 0.0460 0.0002 
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A non-parametric statistical test known as Friedman's test has been carried out to 

assess the performance of various metaheuristic optimization algorithms. The 

obtained Friedman’s ranking has been approximated and a final ranking has been 

assigned to each algorithm. 

Table 5.4 presents each algorithm used on PID controllers along with its final 

ranking and Friedman ranking. As per this ranking the hybrid STOPSO performs 

the best thus, attains a rank of 1 and SHO performs the worst and attains a rank of 

5.  The algorithm STO achieves a rank of 2 followed by AOA rank 3 and ASO 

having rank 4.  

Table 5.4 Ranking of the metaheuristic algorithms on PID controller designed 

according to the Friedman’s Test 

 

Algorithm Friedman's Ranking Final Ranking 

ASO 4.3 4 

AOA 2.8 3 

SHO 4.7 5 

STO 2 2 

 Hybrid STOPSO 1.1 1 
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Figure 5.8 Friedman’s ranking of the metaheuristic algorithms on PID controller 

 

Evidently the proposed algorithm hybrid STOPSO gives the best performance and 

SHO performs the worst in robotic manipulator’s trajectory control. The SHO 

achieves the rank of 5 and shows the poor statistical value of standard deviation 

and substantially high fitness value.  

 

 

                                       Figure 5.9 Trajectory tracking using ASO tuned PID  
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Figure 5.10 Trajectory tracking using AOA tuned PID 
 

Figure 5.9 shows the trajectory tracking using ASO tuned PID, this provided value 

of objective function to be 0.04970. Initially their deviations from reference in 

trajectory but soon it attained the trajectory.  

 

 

Figure 5.11 Trajectory tracking using SHO tuned PID 
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Figure 5.10 and Figure 5.11 present the trajectory tacking using AOA and ASO 

tuned PID controller. AOA has obtained value of objective function to be 0.04607 

while SHO provided 0.04944. In AOA tuned PID controller the first link has some 

overshoots in tracking the reference trajectory while link 2 has no overshoots. 

SHO has shown initial overshoots in the trajectory of both links. These overshoots 

are not desirable for the satisfactory tracking of trajectory in real-time 

implementation.  Statistical investigation has revealed that SHO's performance is 

the worst. Figure 5.12 shows the trajectory tracking using STO-tuned PID 

controller and returned the value of the objective function to be 0.04573. Compared 

to the earlier algorithms, STO has greatly improved the fitness value and 

demonstrated good trajectory tracking. The oscillatory behavior of the actual 

trajectory of link 1 is improved.  

 

 

Figure 5.12 Trajectory tracking using STO tuned PID 
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Figure 5.13 Trajectory tracking using hybrid STOPSO tuned PID 

 

To improve the exploitation capabilities of STO, a new hybrid algorithm STOPSO 

has been proposed.  Further the hybrid STOPSO shown in Figure 5.13 has enhanced 

the fitness value. It attains the best ranking in Friedman’s test.  

 

                 Figure 5.14 Convergence curve of all the metaheuristic algorithms. 

 

Figure 5.14 shows the convergence curve of all the algorithms. The convergence 

curve clearly shows that the algorithms AOA, STO, and hybrid STOPSO converge 
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to lower error values, out of which the hybrid STOPSO algorithm converges to the 

least error value, while ASO and SHO converge to bigger values of error. Thus the 

designed novel hybrid STOPSO shows the convergence to minimum fitness value.  

Table 5.5 shows the comparative study of the STOPSO algorithm with the other 

algorithms implanted for trajectory tracking of a robotic manipulator utilizing the 

PID controller. In [71] and [92], the authors have employed ACO and WOA for 

trajectory tracking problem of a robotic manipulator having two links by tuning a 

PID controller. The performance of the controller has been assessed for IATE error, 

and fitness values of 0.1648 and 3.102, respectively, have been achieved. Table 5.5 

shows the fitness value attained using the AOA, ASO, SHO, STO, and hybrid 

STOPSO algorithm. In comparison to ACO and WOA, the obtained fitness values 

using the proposed algorithms are significantly lower. 

 

Table 5.5 Comparative study of the proposed algorithm 

 

S. 

No 

Technique 

Implemented 

Fitness 

function value 

Technique 

Implemented 

 

Fitness 

function value  

1.   ACO [71] 0.1648 ASO 0.04970 

2. WOA [92] 3.102 AOA 0.04607 

STO 0.04573 

SHO 0.04944 

Hybrid STOPSO 0.04541 
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Chapter 6 

 

Conclusion and Future Scope of the Work 

6.1 Conclusion 

 

There are many applications of robotic manipulators in the household, industry, and 

medical fields. From the perspective of control, these systems are considerably 

more complicated and uncertain. Researchers are discovering many innovative 

ways to control these systems so that they can perform the intended tasks with 

increased efficiency. Trajectory tracking and path planning have extensive 

importance in robotic applications. The conventional and intelligent both control 

techniques have been implemented on robotic systems for various applications. 

Adaptive control, optimum control, and PID control are the conventional 

approaches, whereas intelligent control includes the application of artificial 

intelligence techniques such metaheuristic optimization algorithms. The intelligent 

control methods enhance the task handling capabilities of robotic systems.  

In this work, the trajectory control problem of robotic manipulator has been 

addressed using adaptive sliding mode control (ASMC), PID and FOPID control, 

extremum seeking control, and then implementation of various metaheuristic 

algorithms (GWO, WOA, MFO, and MVO) on the controller designed for a 

linearized model. Furthermore, the metaheuristic algorithms (ASO, AOA, SHO, 

and STO) have been implemented on a nonlinear model of a robotic manipulator.  

The performance indices are weighted sum of IAE and ITAE for implementation 

of these algorithms. Because of the stochastic nature of such algorithms, a statistical 

analysis has been performed by taking 10 runs for each algorithm. As a result, all 

the above algorithms have attained good tracking of the trajectory under the 

constraints. Afterwards, to enhance the exploitation of the implemented algorithm 

STO a novel hybrid algorithm STOPSO has been designed and tested for tracking 

the trajectory of a robotic manipulator. The novel hybrid algorithm has attained the 

trajectory tracking by considerably improving the exploitation capability of STO 
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with incorporation of PSO. A nonparametric statistical test called the Friedman 

anova has been carried out to assess the efficacy of the presented algorithms, and a 

rank has been given to each algorithm. According to this test, MFO attains the best 

ranking and WOA takes the worst ranking in the trajectory control on a linearized 

model of robotic manipulator, and for the nonlinear model analysis hybrid STOPSO 

attains a rank of 1 followed by STO and SHO attains the worst rank. Hybrid 

STOPSO performs the best and SHO performs the worst. Further, a perturbation-

type ESC has been designed to track the optimum point of the defined trajectory. 

The following points summarize the findings of the work. 

 

1. The designed adaptive sling mode control and extremum -seeking control 

techniques can achieve the reference trajectory effectively. 

2. For PID and FOPID implementation using the algorithms GWO, WOA, 

MFO, and MVO, the algorithm MFO performs the best with the cost 

function values 0.2721 and 0.1736 respectively, and WOA performs the 

worst by returning the cost function value 0.2723 and 0.1779.  

3. For PID implementation using the algorithms AOA, ASO, SHO, and STO, 

the algorithms STO performs the best and provides the cost function value 

as 0.04573, and the algorithms ASO performs the worst with the cost 

function value as 0.04970. 

4. To enhance the performance of STO a novel hybrid algorithm STOPSO has 

been designed and applied on PID for trajectory tracking. This algorithm 

provides the cost function value as 0.04541 which is improved as compared 

to STO.  

5. A nonparametric test of Friedman’s anova has been carried out and a 

ranking has been given to each of these algorithms.  
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6.2 Future Scope 

Manipulators are extremely popular robotic systems in performing industrial tasks. 

Intelligent control techniques enhance the task handling ability of such systems. 

The tracking performance of the robotic manipulators can be explored for different 

hybrid algorithms. The application of STOPSO in a variety of other applications, 

such as path planning, joint angle orientation, and tuning of other conventional 

controllers, may also be of interest to research scholars and scientists around the 

world in the future. These algorithms are recent and have a wide possibility of 

implementation in the control design for various other robotic systems, further, this 

work provides a guideline or framework to implement such metaheuristic 

techniques on the hardware model of the robotic systems. 
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