Name:

Enrolment No:

UPES

End Semester Examination, May 2023

Course: Physical Chemistry IV Semester: IV

Program: BSc (H) Chemistry & Int. B.Sc.-M.Sc. Chemistry

Course Code: CHEM 2025

Max. Marks: 100

Instructions:

1) Read all questions carefully.

2) Attempt all questions under one section in one place.

SECTION A (5Qx4M= 20 Marks)

S. No.		Marks	CO
Q 1	Calculate the value of an einstein of energy in electron volts for radiation of 3 \times 10 ¹³ s ⁻¹ frequency.	4	CO1
Q2	At room temperature the molar conductance of H ₂ O is 1.0 x 10 ⁻⁶ S m ² mol ⁻¹ and the molar conductance at infinite dilution is 550 S m ² mol ⁻¹ . Calculate the degree of dissociation of water?	4	CO1
Q3	The rate constant for a reaction of zero order is 0.0030 mol L ⁻¹ s ⁻¹ . How long will it take for the initial concentration to fall from 0.10 M to 0.075 M?	4	CO1
Q4	Differentiate between (i) Specific conductance and Equivalent conductance (ii) Galvanic cell and Electrolytic cell	2 +2	CO1
Q5	Calculate equilibrium constant for the reaction $Zn_{(s)}+Cu^{2+}_{(aq)} \iff Cu_{(s)}+Zn^{2+}_{(aq)}$ at 25 ^{0}C . Standard <i>emf</i> of the cell is 1.10 V.	4	CO1
	SECTION B (4Qx10M= 40 Marks)		
Q6	Calculate the transmittance, absorbance and absorption coefficient of a solution which absorbs 90% of a certain wavelength of light beam passed through a 1 cm cell containing a 0.25 M solution.	10	CO2
Q7	Write a brief note on Norrish Type-I and Norrish Type-II reactions.	10	CO1
Q8	Ionization constant of acetic acid and ionic product of water at 25 °C are 1.75 x 10 ⁻⁵ and 1 x 10 ⁻¹⁴ respectively. Calculate the hydrolysis constant of sodium acetate and its degree of hydrolysis in 0.1 molar solution at 25 °C.	10	CO3
Q9	What is meant by transport number of an ion? How is it determined using Hittorf's method and Moving Boundary method? Or	10	CO2

	A first order gas reaction $A_2B_{2(g)} \rightarrow 2A_{(g)}$ at the temperature 400 0 C has the rate constant $k = 2.0 \times 10^{-4} \text{s}^{-1}$. What percentage of A_2B_2 is decomposed on				
	heating for 900 seconds? SECTION-C				
	(2Qx20M=40 Marks)				
Q10	 (a) What do you understand by quantum yield of a photochemical reaction? Why do some reactions have high quantum yield whereas some others have very low value? What is the modified definition of Stark-Einstein law? (b) The resistance of a conductivity cell when filled with 0.02 M KCl solution is 164 ohms at 298 K. However, when filled with 0.05 M AgNO₃ solution, its resistance is found to be 78.5 ohms. If specific conductivity of 0.02 M KCl is 2.768 x 10⁻³ ohm⁻¹, calculate (i) The conductivity of 0.05 M AgNO₃ (ii) The molar conductivity of AgNO₃ solution 	10 +10	CO2		
Q11	(a) Prove that degree of hydrolysis of a salt of weak acid and weak base is independent of the concentration of the solution Or				
	Calculate the electrode potential of a copper wire dipped in 0.1 molar copper sulphate solution at 25 °C. At this temperature, the standard electrode potential of copper is 0.34 volt (F= 96500 coulombs; R = 8.314 J deg ⁻¹ mol ⁻¹). Assume CuSO ₄ to be completely ionized and take the activity of copper ions equal to the molar concentration.	10 +10	CO3		
	(b) The decomposition of N_2O_5 to NO_2 and O_2 is first order with a rate constant of 4.8×10^{-4} per second at $45 ^{0}$ C.				
	 (i) if the initial concentration is 1.65 x 10⁻² mol/L, what is the concentration after 825 second? (ii) How long would it take for the concentration of N₂O₅ to decrease to 1.0 x 10⁻² mol/L from its initial value, given in (i)? 				