Name:

Enrolment No:

UPES

End Semester Examination, May 2023

Course: Function of several variables and Partial differential equations

Program: B. Sc.(H)/Int. B.Sc-M.Sc. Mathematics

Course Code: MATH 2050

Semester: IV Time : 03 hrs. Max. Marks: 100

CO₂

4

Instructions:

- 1. Section A has 5 questions. All questions are compulsory.
- 2. Section B has 4 questions. All questions are compulsory. Question 8 has internal choice to attempt anyone.
- 3. Section C has 2 questions. All questions are compulsory. Question 11 has internal choice to attempt anyone.

SECTION A (50x4M=20Marks)

S. No.		Marks	CO
Q 1	Define partial derivatives for a function of two variables. Give an example of a function which is not continuous, but all its partial derivatives exist.	4	CO1
Q 2	Solve the PDE: $(D^3 - 3D^2D' + 4D'^3)u = 0$.	4	CO2
Q 3	Determine the region in which the given equation is hyperbolic, parabolic, or elliptic. $U_{xx} + y^2 U_{yy} = y.$	4	CO3
Q 4	Determine if the given PDE is reducible or irreducible with justification. $(D^2 - D'^2 + D - D')u = 0$	4	CO3
Q 5	Find general integral of the PDE.		

	SECTION B				
(4Qx10M=40 Marks)					
Q 6	Find local maxima, local minima and saddle point of the function. $f(x,y) = 3 x^2 + 6 x y + 7 y^2 - 2 x + 4 y$	10	CO1		
Q 7	Solve the following PDE $(D^2 - 4DD' + 4D'^2)u = e^{2x+y}$	10	CO2		

 $\frac{y^2z}{x} p + xzq = y^2.$

Q 8	Reduce the equation to canonical form $ (n-1)^2 u_{xx} - y^{2n} u_{yy} = ny^{2n-1} u_y $		
	OR	10	CO3
	Find complete integral of the PDE: $(D^2 - DD' - 2D)u = \sin(3x + 4y)$		
Q 9	Obtain the solution of the wave equation $u_{tt} = 5 u_{xx}$ under the following conditions: (i) $u(0,t) = u(2,t) = 0$ (ii) $u(x,0) = sin(\frac{3\pi x}{2})$ (iii) $u_t(x,0) = 0$	10	CO4
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Obtain the complete integral of the given PDE $ (D^2 - DD' + D' - 1)u = \cos(x + 2y) + e^{x+y} + xy $	20	СО3
Q11	Discuss all possible solutions of Laplacian equations using variable separable method. $U_{xx} + U_{yy} = 0$		
	OR	20	CO4
	A bar of 100cm long, with insulated sides, has its ends kept at $0^{\circ}C$ and $100^{\circ}C$ until steady state conditions prevail. The two ends are then suddenly insulated and kept so. Find the temperature distribution.		