Name:

Enrolment No:

UPES

End Semester Examination, May 2023

Course: s&p-Block Element, States of Matter, Chemical Kinetics

Semester: IV

Program: B.Sc (Physics) & Int B.Sc/M.Sc Physics; B.Sc (H) Mathematics & Int B.Sc/M.Sc Mathematics;

B Sc. (H) Geology

Course Code: CHEM 1010G

Time: 03 hrs.

Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО
Q 1	What is Ellingham diagram? What kind of information one can extract from these diagrams?	4	CO2
Q 2	Complete the following reaction: $NH_3 + CO_2 \xrightarrow{180-200^{\circ}C} \mathbf{A} \xrightarrow{180-200C} \mathbf{B} + \mathbf{C}$	4	СОЗ
Q 3	Highlight the significance of pressure correction factor (P _a) and volume correction factor (b) of the van der Waal equation.	4	CO2
Q 4	What is hydroboration reaction? Provide the details of this reaction with appropriate examples.	4	CO1
Q 5	How many crystal systems exist in solids? Define essential conditions of their classification.	4	CO2
	SECTION B		
	(4Qx10M = 40 Marks)		
Q 6	Differentiate ideal and real gases. Compare their distinct properties.	10	CO2
Q 7	Define Andrews isotherms of CO ₂ .	10	CO2
Q 8	Define hydrometallurgy. Discuss hydrometallurgy process by giving two examples.	10	CO1
Q 9	What is Bragg's law? Derive the Bragg's equation for the reflection of X-rays from crystalline solids. OR Name the following products A, B, C, and D in a given chemical reaction:	10	CO3

	CuS Roast \rightarrow A + B Roast \rightarrow C + D			
SECTION-C				
(2Qx20M=40 Marks)				
Q 10	Discuss the postulates of kinetic theory of gases. Derive the kinetic gas equation.	20	CO2	
Q 11	Derive the van der Waal equation. Highlight the fundamental assumptions of kinetic theory of ideal gas and the van der Waal equation.			
	OR Discuss the method of preparation, chemical/physical properties, and applications of hydrazic acid (HN_3). Give appropriate chemical reactions to	20	CO3	
	justify your answers.			