Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2023

Programme Name: B. Tech. CERP

Course Name : Mass Transfer I

Course Code : CHCE 2020

Semester : IV

Time : 03 hrs

Max. Marks : 100

Nos. of page(s) : 2

Instructions : Attempt all questions. Assume any missing data with proper justification.

	SECTION A (Answer all)	4 x 5 -2	0 marks
S. No.	(Answer an)	Marks	CO
Q 1	Explain interphase mass transfer with a suitable example.	5	CO1
Q 2	Discuss the use of "Kremser Equation" in design of mass transfer operation unit.	5	CO1
Q 3	Explain the different types of trays used in distillation column.	5	CO1
Q.4	Discuss the characteristics of tower packings.	5	CO1
	SECTION B	I	
	$(4 \times 10 = 40 \text{ marks})$		
Q 5	In a liquid-liquid contacting device, the equilibrium distribution of solute C in the solvents A and B can be expresses as $y = 10.5 \ x$ where x and y are the concentration of solute in phases A and B respectively. If the individual mass transfer resistances are $k_x = 10.21 \frac{lbmol}{h \ ft^2}; k_y = 4.35 \frac{lbmol}{h \ ft^2}$ Determine the phase which controls the mass transfer.	10	CO2
Q.6	A square plate (0.5 m X 0.5 m) coated with a layer of benzoic acid, is placed in a stream of water flowing at a velocity of 0.25 m/s at a temperature of 25°C. Calculate the average rate of dissolution of the acid per unit area of the plate and also the equivalent thickness of a stagnant liquid film that would offer the same resistance to mass transfer. $Sh_{avg} = 0.664 \ (Re_l)^{1/2} (Sc)^{1/3}$ The following data (at 25°C) are available: Solubility of benzoic acid is water = 3.01 kg/m³ Diffusivity of benzoic acid in water = 10^{-9} m²/s Viscosity of water = $8.9 \ X \ 10^{-4}$ kg/m-s	10	CO2

Q.7	One hundred kilogram of an aqueous solution of p-chloroform at a concentration of 1		
Q. 7	g per kg water is to be treated with 2 kg of an adsorbent to recover the compound from		
	the solution by a two-stage cross current contact. Calculate the recovery of the solute	10	CO3
	if the equilibrium relation at the operating temperature of 298 K is given by	10	COS
	Y = 0.6 X		
	where $X = kg$ solute per 1000 kg water and $Y = kg$ solute per kg adsorbent.		
Q.8	It is required to remove 99 % of the solute C from a solution of C in G by using a pure		
•	solvent L in a counter-current cascade. The feed containing 12% C in the mixture		
	enters the column at the bottom at the rate 6000 kg/h. The solvent enters at the top at a		
	rate of 7685 kg/h. Write down the equation of the operating line. Determine the number	10	CO3
	of trays required to perform the separation using Kremser equation if the overall tray		
	efficiency is 40 %. The equilibrium line is linear, $Y = 1.32 \text{ X}$, where $Y = \text{kg C}$ per kg		
	C-free G, and $X = kg C$ per $kg C$ -free L.		
	SECTION C		
	$(2 \times 20 = 40 \text{ marks})$		
Q.9	Ethanol forms a nearly ideal solution with <i>iso</i> -butanol and has a relative volatility 2.2.		
	A heated feed containing 40 mole % ethanol and 60 mole % iso-butanol enters a flash		
	drum at a rate of 50 kmol/h. (a) What fraction of the feed should be vaporized in order		
	to have a bottom product containing not more than 10 % ethanol (b) Consider a second	20	CO4
	flash drum that receives the bottom product from the first drum. If 60 % of the feed is		
	vaporized in each drum, estimate the vapor and liquid flow rates from each chamber		
	as well as their composition.		
Q.10	A distillation column separates a saturated feed containing 25 mole % A and 75 mole		
	% B. The relative volatility (α_{AB}) is 2.51. The vapor liquid equilibria is shown in Figure		
	1. The liquid concentration on the 5 th tray is $x_5 = 0.54$. The distillate has 98 mole %		
	A and the reflux ratio is 3.		
	(a) Determine the concnetration of A in vapor phase entering and leaving the 5 th		
	tray.	20	CO4
	(b) Which section of the column does the 5 th tray belong		
	(c) Calculate the enrichment of the vapor across the 4 th tray		
	(d) If 97 % of A present in the feed goes to top product, calculate the moles of		
	liquid vaporized in the reboiler per mole of distillate. Assume that trays are		
	ideal		