Name:

Enrolment No:

UPES

End Semester Examination, May 2023

Course: Statistical Physics

Program: BSc. (H) Physics & Int. BSc. MSc. Physics

Course Code: PHYS 2028

Semester: IV

Time: 03 hrs.

Max. Marks: 100

Instructions:

- 1. All questions are compulsory.
- 2. Questions 9 and 10 have internal choices.
- 3. Write your answers clearly and legibly.
- 4. All numerical problems must be solved using appropriate formulae and units.

SECTION A (5Qx4M=20Marks)

	,		
S. No.		Marks	СО
Q 1	Define phase space. What will be the phase trajectory of a stone under free fall?	4	CO1
Q 2	What is the difference between the Fermi-Dirac and Bose-Einstein distribution functions?	4	CO1
Q 3	Show that the radiation enclosed in a thermally insulated enclosure is independent of the nature and shape of the walls of enclosure.	4	CO2
Q 4	Assume that each face of a six-faced dice is equally likely to land uppermost. Consider a game that involves tossing 5 such dice. Determine the probability that number 2 appears uppermost (i) in one dice, (ii) in exactly two dice.	4	CO2
Q 5	Deduce the number of quantum states available to an electron moving in one dimension confined within 10 Å, when its speed does not exceed 10^7m/s .	4	CO3
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Define the following terms: (a) Microstates (b) Macrostates (c) Ensemble (d) Partition Function (e) Entropy	10	CO1

Q 7	Find the expression for gases separated by a diawas it removed?	10	CO2			
Q 8	Deduce Wein's law for	10	CO2			
Q 9	Discuss whether the classical treatment would be valid for He gas at (i) NTP (T=273 K and P= 1 atm), (ii) at 3 K and atmospheric pressure. (take V/N = 10 ⁻²⁰ cm ³ for He gas and V/N= 5x10 ⁻²³ cm ³ for liquid He) OR The following observations have been noted for a blackbody spectrum taken at 500 K. What will be the corresponding set of values at 1000K?					CO3
		λ 10μ 8μ 6μ 4μ	E _λ 10 units 14 units 16 units 12 units		10	
		(2	SECTION Qx20M=40			
Q 10	What is the deference between a strongly degenerate FD gas and a strongly degenerate BE gas? Derive the conditions for Bose-Einstein condensation and discuss the properties of liquid helium. OR Show the difference between a completely degenerate and a strongly degenerate Fermi gas using the plot of occupation number versus energy curve at 0K and at any other temperature T. Deduce the expression for specific heat for a strongly degenerate FD gas and show that it varies linearly with temperature.					CO2
Q 11	Consider a paramagnetic 1/2 and intrinsic magnetic field equilibrium at a tempantiparallel (P-) to the case (a) B is very high and T Also evaluate the averagobtain an expression for as a function of T.	20	CO4			