Name:

Enrolment No:

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

End Semester Examination (Online) – May, 2021

Program: MA(EE)
Subject/Course: Business Modelling Lab

Course Code: OGET8112

Semester: IV Max. Marks: 100 Duration: 3 Hours

Section-A

- 1. Each question will carry 5 marks
- 2. Select the correct answer(s)

S.No.	Question		
1	Percapita Energy Consumption of India over the period 2000-2020 is an example of A. Time Series Data B. Cross-Sectional Data C. Pooled Data D. Panel Data	5	CO 1
2	If you want to estimate energy efficiency of Indian Manufacturing Companies, Which modelling techniques you would prefer. A. Data Envelopment analysis B. Input-output analysis C. Principal Component Analysis D. Panel Data Regression		
3	Null Hypothesis: LSTOCK_INDEX_FR has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=17) Augmented Dickey-Fuller test statistic Test critical values: 1% level 1% level 1% level 1% level 2.867219 10% level -2.869857 *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(LSTOCK_INDEX_FR) Method: Least Squares Date: 07/29/14 Time: 09:55 Sample (adjusted): 1973M02 2013M11 Included observations: 490 after adjustments Variable Coefficient Std. Error t-Statistic Prob. LSTOCK_INDEX_FR(-1) -0.002380 0.002701 -0.880948 0.3788 C 0.021361 0.017273 1.236689 0.2168 R-squared 0.001588 Mean dependent var 0.006391 You are provided the EViews output for an Augmented Dickey-Fuller (ADF)-test (below). According to the test: A. The null hypothesis of unit root is rejected; the variable has a stochastic trend. B. The null hypothesis of unit root is rejected at 10% significance level; the variable is		CO 1

	stationary. C. The null hypothesis of unit root is not rejected at 1, 5 or 10% level of significance; the variable is non-stationary D. I don't know.						
4	Which can be a potential problem while we are working on forecasting a time series data. A. Non-Stationarity B. Multicolinearity C. Autocorrelation D. None of the above	5	CO 2				
	A 99% t-based confidence interval for the mean price for a gallon of gasoline (dollars) is calculated using a simple random sample of gallon gasoline prices for 50 gas stations. Given that the 99% confidence interval is \$3.32<μ<\$3.98, what is the sample mean price for a gallon of gasoline (dollars)? A. \$0.33 B. \$3.65		CO				
5	C. Not enough Information; We would need to know the variation in the sample of gallon gasoline pricesD. None of the above	5	1				
6	 What is a spurious regression? A. Statistically significant but meaningless results generated by regression analysis of non-stationary data B. The results generated by regression analysis of a station variable dependent on a non-stationary series C. Regression analysis where endogenous and exogenous variables are reversed D. Regression analysis that is impossible due to lack of identification 	5	CO 1				
	Section-B		_				
	 Each question will carry 10 marks Instruction: Write short/ brief notes 						
7.	What are the data analytic tools available for Energy Industry?	10	CO 2				
8.	If you want to model demand for Electricity Vehicle Market in India, Explain the steps for forecasting it.	10	CO 2				
9.	Explain the importance big data in Energy Industry.	10	CO 2				
10.	If you want to estimate factors affecting supply of renewable energy in India. What will be the econometric model for setting up the problem statement?	10	CO 3				

11	Give example of cross sectional data, panel data, and time series data in the context of Energy		3
	Industry. Explain the advantages and disadvantages of each data.		3

Section-C

- 1. Each question carries 20 Marks.
- 2. Instruction: Write long answer.

12

Using 157 weekly observations on sales revenue (SALES) and advertising expenditure (ADV) in millions of dollars for a large department store, the following relationship was estimated

$$\widehat{SALES}_t = 18.74 + 1.006 ADV_t + 3.926 ADV_{t-1} + 2.372 ADV_{t-2}$$

- a. How many degrees of freedom are there for this estimated model? (Take into account the observations lost through lagged variables.)
- b. Describe the relationship between sales and advertising expenditure. Include an explanation of the lagged relationship. When does advertising have its greatest impact? What is the total effect of a sustained \$1 million increase in advertising expenditure?
- c. The estimated covariance matrix of the coefficients is

	C	ADV_t	ADV_{t-1}	ADV_{t-2}
C	0.2927	-0.1545	-0.0511	-0.0999
ADV_t	-0.1545	0.4818	-0.3372	0.0201
ADV_{t-1}	-0.0511	-0.3372	0.7176	-0.3269
ADV_{t-2}	-0.0999	0.0201	-0.3269	0.4713

Using a two-tail test and a 5% significance level, which lag coefficients are significantly different from zero? Do your conclusions change if you use a one-tail test? Do they change if you use a 10% significance level?

d. Find 95% confidence intervals for the impact multiplier, the one-period interim multiplier, and the total multiplier.

20

CO 4