Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Robotics Program: B.Tech- Mechanical & Specialization

r togram: b. rech- Mechanical & Specialization

Course Code: ADEG481

Semester: VII Time: 03 hrs.

Max. Marks: 100

Instructions:

SECTION A

S. No.		Marks	CO
Q 1	A robot is required to perform an assembly of a shaft into a bearing placed in an arbitrary position. List the degrees of freedom are required for a manipulator to perform this task. If the bearing is placed in a horizontal plane, identifies the required degree of freedom.	5	CO1
Q 2	Determine the transformation matrix T that represents a translation of a unit along x-axis, followed by a rotation of an angle α about x-axis followed by a rotation of θ about rotated z-axis.	5	CO2
Q 3	Discuss the parameters for a link for kinematic modeling.	5	CO2
Q 4	Describe the workspace of a manipulator. Make a list of factors on which the workspace, the dexterous and reachable workspace, of a given manipulator depends.	5	CO2
	SECTION B		
Q 5	Jacobian of an <i>n</i> - DOF manipulator is a 6X <i>n</i> matrix. How can its inverse be determined to compute the kinematic singularities of the manipulator?	10	CO3
Q 6	If a manipulator is to be used in a gravity -free environment, say space, discuss the effect of this on the dynamic model. Predict the forces that will be the significant under these conditions.	10	CO3
Q 7	The motion of a joint from start to goal position is specified in terms of position, velocity and acceleration at the beginning and end of a path segment. Determine the coefficient the fifth-degree polynomial for interpolating the smooth trajectory in the segment.	10	CO4

SECTION-C		
Por the nonplanar 2-DOF manipulator with two rotary joints, shown in figure 3, obta the dynamic equation of motion using Lagrange-Euler formulation. Assume lin masses, m₁ and m₂ to be unity and concentrated at the distal ends of the respectively. Mathematical Representation of the properties of	ık	CO4
For the 4-ODF manipulator shown in figure4, determine the joint displacement required for the tool point position and orientation given by the following transformation matrix. $T = \begin{bmatrix} 0.5 & -0.866 & 0 & -84 \\ 0.866 & -0.5 & 0 & -48.5 \\ 0 & 0 & -1 & 105 \\ 0 & 0 & 0 & 1 \end{bmatrix}$		CO4

