CONFIDENTIAL

		ı						
Name of Examination (Please tick, symbol is given)	÷	MID		END	✓	SUPPLE		
Name of the College (Please tick, symbol is given)	÷	SOB/SOL		SOB/SOL		SOL	←	
Program	÷	B.Sc., LL.B. (Hons.) IPR/FHEL/MFL						
Semester	÷	4	4					
Name of the Subject (Course)	÷	PHYSICS	PHYSICS					
Course Code	÷	CLNL 1033						
Name of Question Paper Setter	÷	DR PRASHANT S. RAWAT						
Employee Code	÷	40000560						
Mobile & Extension	÷	÷ 8979354469/ EXTN: 1202						
Note: Please mention additional Stationery to be provided, during examination such as Table/Graph Sheet etc. else mention "NOT APPLICABLE":								
FOR SRE DEPARTMENT								
Date of Examination :								
Time of Examination :			÷					
No. of Copies (for Print)			÷					

Note: Pl. start your question paper from next page

Roll No:	
-----------------	--

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course	t (Course):	B.Sc., LL.B. (Hons.) IPR/FHD PHYSICS CLNL 1033 03	EL/MFL	Semester : I Max. Marks : 100 Duration : 3 Hrs
		SECTIO	N A	
				$[10 \times 1 = 10]$
1.	When a few dr	ops of oil spread on a water s	surface, it di	splays beautiful colours in daylight
	a. Dispersion ob. Polarization		c. d.	Interference of light Reflection of light (co1)
2.	The resolving a. Blue lightb. Red light	power of a telescope is highe	est amongst c. d.	
2	_			(co1)
3.	a. Corpuscular	non of Polarization in light pr nature of light wave nature of light	c. d.	Transverse wave nature of light Quantum nature of light
4.	-	recede from each other. Their		
	a. 0 b. c/2			2c c
5.	An n – type se	miconductor is		(co3)
	a. Negatively cb. Positively ch		c. d.	Electrically neutral None of the above
6.	The need for p	opulation inversion in a laser	is	(co4)
		st atoms in the ground state st atoms to an excited state	c. d.	To bring most atoms to a stable state None of the above
7.	width 'a' sepa different order		idth 'b'. Tl	(co2) a grating with transparent strips of the angular separation between the
	a. 'a' b. 'b'		c. d.	'λ' 'a', 'b' and 'λ'
_			.	(co1)
8.	a. Only produc	m may be used to e polarized light e polarized light	c. d.	Both produce and analyze polarized light Undo polarization of light

				(co1)
9.	Αo	cube when moved along one of its faces at very h	_	-
	a. b.	Rectangle Cube	c. d.	1
	υ.	Cube	u.	(co3)
10	In	a Young's double slit arrangement, if the light so	ourc	* * *
	a.	Fringe width decreases	c.	Fringe width becomes non-uniform
	b.	Fringe width increases	d.	Fringe width remains the same
				(co1)
		SECTION B		
				$[5 \times 4 = 20]$
11.	In	what way is Laser light different from that obta	inec	from the other conventional light
		urces, like the filament bulbs?	11100	(co2)
	500	dices, like the manient outes.		(602)
12.	WI	hat is the effect on the fringe system obtained by	7 a \	Young's double slit arrangement if
12.		Intensity of light from one of the slits is decreased,		toung a double and urraingement in,
		Separation between the two slits is reduced?		
	,	1		(co1)
13.	Ex	plain the concept of 'Time dilation' in the Specia	al T	, , ,
				(co3)
14.	. Wł	hat is elliptically polarized light? [Hint: illustration	ng v	
		1 ,1 ,	U	(co1)
15	WI	hat is 'depletion region' in a P-N junction diode?		(co4)
		OR		(63.7)
15. What is the effect of introduction of a thin transparent slab before the slits in a Young's				
		uble slit arrangement?		(co1)
		č		,
		SECTION C		
16	A 1	researcher observes that a certain atom A moving	wi	th velocity 2.0×10^8 m/s relative to
10		m emits a particle B, which moves with a velocity	-	-
		Iculate the velocity of the emitted particle B with		
	Cu	inculate the velocity of the efficient particle B with	1103	spect to the researcher. $(co3)$
17	A 1	pulsed laser emits radiation of wavelength 8000	Å	* /
1/.		lculate the energy of the laser pulse.	, , , , , , , , , , , , , , , , , , ,	[7]
	cai	iculate the energy of the laser pulse.		(co2)
	OR			
17.	. Ca	lculate the minimum number of lines in a grati	ng.	which would just resolve lines of
		evelengths, 6000 Å and 6010 Å. [Hint: For simple	_	

[7]

(co1)

18. A ray of light is incident on the surface of a transparent plate of refractive index $\sqrt{3}$ at the polarizing angle. Calculate the angle of refraction of the ray. [6]

(co1)

SECTION D

19. What is polarized light? How would you detect plane, circularly and elliptically polarized light? [3+12]

(co1)

20. Discuss Fraunhoffer diffraction at a single slit. Derive the expression for light intensity at a screen due to Fraunhoffer diffraction at a single slit. Discuss the intensity pattern in brief.

[3+12+5]

(co1)

21. State the postulates of Special Theory of Relativity. Show that when an object moves with velocity 'v' ($v \rightarrow c$) relative to a fixed frame, its measured length appears contracted (shorter) in the direction of motion. Discuss if the contraction is real? [4+8+3]

(co3)

<u>OR</u>

21. Describe briefly the Einstein's co-efficients (as related to radiation), and derive the relation between them. [5+10]

(co2)

Ro	ll No:
UPES	
OPLS	
INIVERSITY WITH A PURPOSE	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Program: B.Sc., LL.B. (Hons.) IPR/FHEL/MFL Semester : I **Subject (Course): PHYSICS** Max. Marks : 100 **CLNL 1033** Course Code : Duration : 3 Hrs

No. of page/s: 03

SECTION A

(co1)

 $[10 \times 1 = 10]$ 1. Interference of waves have been observed with e. Light waves g. Sound waves f. Water waves h. All of above (co1) 2. Which property of light is confirmed by diffraction e. Wave nature Corpuscular nature Both of above h. None of above (co1) 3. The transverse nature of light is shown by the phenomenon of e. Interference g. Diffraction f. Polarization h. All of above (co1) 4. Two photons approach each other. Their relative velocity would be e. 0 g. 2c f. c/2 h. c (co3)5. An p – type semiconductor is e. Negatively charged Electrically neutral h. None of the above f. Positively charged (co4) 6. The need for population inversion in a laser is e. To bring most atoms in the ground state g. To bring most atoms to a stable state f. To bring most atoms to an excited state h. None of the above (co2)7. The capacity of an optical instrument to show separate images of very closely placed two

g. Diffracting power

h. Optical power

8. A Nicol's prism is based on the action of

objects is called e. Interference power

f. Resolving power

	e. f.	Refraction of light Double refraction of light	g. h.	Reflection of light Undo polarization of light	
9.	A e. f.	square when moved along one of its faces at very Rectangle Cube	hig g. h.	(co1) h speed will look like a Sphere Rectangular parallelepiped	
10.		a Young's double slit arrangement, if the light so Fringe width decreases Fringe width increases		(co3)	
		SECTION B			
				$[5 \times 4 = 20]$	
11.	. W	hat are the differences between a spontaneous em	nissi	on and a stimulated emission?	
				(co2)	
12.	a)	hat is the effect on the fringe system obtained by Intensity of light from one of the slits is increased, Separation between the two slits is increased.	a Y	oung's double slit arrangement if,	
	U)	separation between the two sits is increased.		(co1)	
13.	. Ex	splain the concept of 'velocity addition' in the Sp	ecia	·	
				(co3)	
14.	. W.	hat is elliptically polarized light? [Hint: illustrating	ng w	oth diagram would help!] (co1)	
15. What is a 'barrier' in a P-N junction diode?					
				(co4)	
OR 15. What is the effect of introduction of a thin transparent slab after one of the slits in a Young's					
	uo	uble slit arrangement?		(co1)	
SECTION C					
16.		hat would be the length of a one metre long stick ass is 1.6 times its rest mass?	mo	ving parallel to its length, when its [7] (co3)	
17.		pulsed laser emits radiation of wavelength 8000	Å.	If it emits 10 ¹⁷ photons per pulse,	
	ca	lculate the energy of the laser pulse.		[7] (co2)	
		OR		(CO2)	
17.		alculate the minimum number of lines in a gratical avelengths, 5000 Å and 5010 Å. [Hint: For simple	_	_	

[7]

(co1)

18. When a ray of light is incident on the surface of a transparent plate at an angle of 53 degrees, the reflected light is found to be fully polarized. Find the angle of refraction and the refractive index of the plate. [6]

(co1)

SECTION D

- 19. What is polarized light? Give a scheme to detect the different components, i.e., unpolarized, plane, circularly and elliptically polarized ones, of a given light? [3+12] (co1)
- 20. Discuss Fraunhoffer diffraction at multiple slits. Discuss the intensity pattern, the different maxima and minima in it. Give a practical application of this type of diffraction. [5+12+3] (co1)
- 21. State the postulates of Special Theory of Relativity. Show that watches in moving frames appear to go slow for observers in stationary frame. Discuss if this time dilation is real?

[4+8+3]

(co3)

<u>OR</u>

21. Explain the concept of population inversion in a laser. Describe in detail the action of a He-Ne laser. State briefly its advantageous over some other lasers. [3+9+3] (co2)