Name: **Enrolment No:** ## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2018** **Course: Satellite Communication** Semester: VII Programme: B. Tech Electronics Engineering Time: 03 hrs. Max. Marks: 100 **Instructions:** Attempt all question Diagrams must be neat and clean Radius of earth at equator = 6400×10^3 m. Gravitational constant = 6.67×10^{-11} m³ kg⁻¹ s⁻² Velocity of EM wave = 3×10^8 m s⁻¹ ## **SECTION A** | S. No. | | Marks | CO | |--------|--|-------|-----| | Q 1 | Briefly describe the process (with suitable block diagram) of the transmission of a baseband signal from earth station to satellite in space. | 5 | CO1 | | Q 2 | Comment on the suitable choice of digital modulation technique employed in satellite communication. | 5 | CO3 | | Q 3 | Calculate the velocity of a satellite in geo stationary orbit . | 5 | CO4 | | Q 4 | What are the characteristics of a geo stationary orbit ? Which space centers in India are responsible for the tracking of satellite in this orbit? | 5 | CO2 | | | SECTION B | | | | Q 5 | Consider A and B are the two extreme points in the north hemisphere and south hemisphere respectively, up to which signals from a geo stationary satellite can be located. If a signal is send from A to a geo stationary satellite at 00:10:10 hrs , then when will be it received at B from the satellite? | 10 | CO3 | | Q 6 | Describe the various stages in the placement of a satellite from the launching site to the desired geo stationary orbit . State with valid reason the choice of launch site and launch vehicle. | 10 | CO1 | | Q 7 | Briefly describe the operation of a single stage transponder system . Illustrate the transponder link with the help of suitable diagram. | 10 | CO2 | | Q 8 | What is satellite coverage angle ? Calculate the extreme latitude in North or South | | | | | |------|---|------------------------------------|----------|-----|-----| | | hemisphere that can be in coverage of a geo | onary satellite. Consider the tilt | 10 | CO4 | | | | angle of the antenna to be 4 degree. | | | | | | | SE | CTIC | ON-C | | | | Q 9 | Compute the downlink C/N of a satellite with the following specification. | | | | | | | Satellite transmitted power | = | 40 W | | | | | Gain of the transmitted antenna | = | 10 dB | | | | | Gain of the received earth antenna | = | 12 | | | | | Transponder bandwidth | = | 400 MHz | 20 | CO3 | | | Downlink frequency | = | 11 GHz | 20 | | | | Boltzmann constant | = | - 226 dB | | | | | Noise Temperature | = | 8K | | | | | Antenna alignment loss | = | 2 W | | | | | Feeding loss | = | 2 dB | | | | Q 10 | A satellite is revolving over the equator in an elliptical path around the earth. If | | | | | | | height of the satellite at the apogee is 5 times than that at perigee. Compute its | | | | | | | altitude and speed at these two points in kmph. | | | | | | | Semi-major axis of the elliptical orbit = 18400 km | | | 20 | CO4 | | | What be the velocity of the satellite if the two focus of the mentioned elliptical orbits become one. | | | | | | | | | | | |