Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course: Satellite Communication Semester: VII

Programme: B. Tech Electronics Engineering

Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all question

Diagrams must be neat and clean Radius of earth at equator = 6400×10^3 m. Gravitational constant = 6.67×10^{-11} m³ kg⁻¹ s⁻² Velocity of EM wave = 3×10^8 m s⁻¹

SECTION A

S. No.		Marks	CO
Q 1	Briefly describe the process (with suitable block diagram) of the transmission of a baseband signal from earth station to satellite in space.	5	CO1
Q 2	Comment on the suitable choice of digital modulation technique employed in satellite communication.	5	CO3
Q 3	Calculate the velocity of a satellite in geo stationary orbit .	5	CO4
Q 4	What are the characteristics of a geo stationary orbit ? Which space centers in India are responsible for the tracking of satellite in this orbit?	5	CO2
	SECTION B		
Q 5	Consider A and B are the two extreme points in the north hemisphere and south hemisphere respectively, up to which signals from a geo stationary satellite can be located. If a signal is send from A to a geo stationary satellite at 00:10:10 hrs , then when will be it received at B from the satellite?	10	CO3
Q 6	Describe the various stages in the placement of a satellite from the launching site to the desired geo stationary orbit . State with valid reason the choice of launch site and launch vehicle.	10	CO1
Q 7	Briefly describe the operation of a single stage transponder system . Illustrate the transponder link with the help of suitable diagram.	10	CO2

Q 8	What is satellite coverage angle ? Calculate the extreme latitude in North or South				
	hemisphere that can be in coverage of a geo	onary satellite. Consider the tilt	10	CO4	
	angle of the antenna to be 4 degree.				
	SE	CTIC	ON-C		
Q 9	Compute the downlink C/N of a satellite with the following specification.				
	Satellite transmitted power	=	40 W		
	Gain of the transmitted antenna	=	10 dB		
	Gain of the received earth antenna	=	12		
	Transponder bandwidth	=	400 MHz	20	CO3
	Downlink frequency	=	11 GHz	20	
	Boltzmann constant	=	- 226 dB		
	Noise Temperature	=	8K		
	Antenna alignment loss	=	2 W		
	Feeding loss	=	2 dB		
Q 10	A satellite is revolving over the equator in an elliptical path around the earth. If				
	height of the satellite at the apogee is 5 times than that at perigee. Compute its				
	altitude and speed at these two points in kmph.				
	Semi-major axis of the elliptical orbit = 18400 km			20	CO4
	What be the velocity of the satellite if the two focus of the mentioned elliptical orbits become one.				