Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

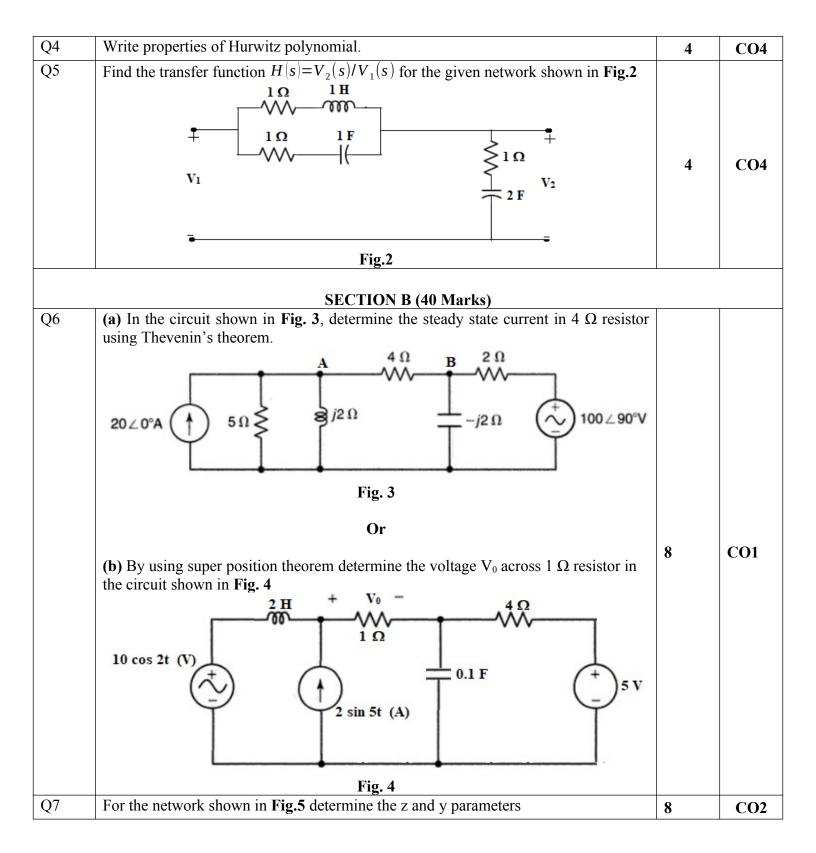
End Semester Examination, December 2018

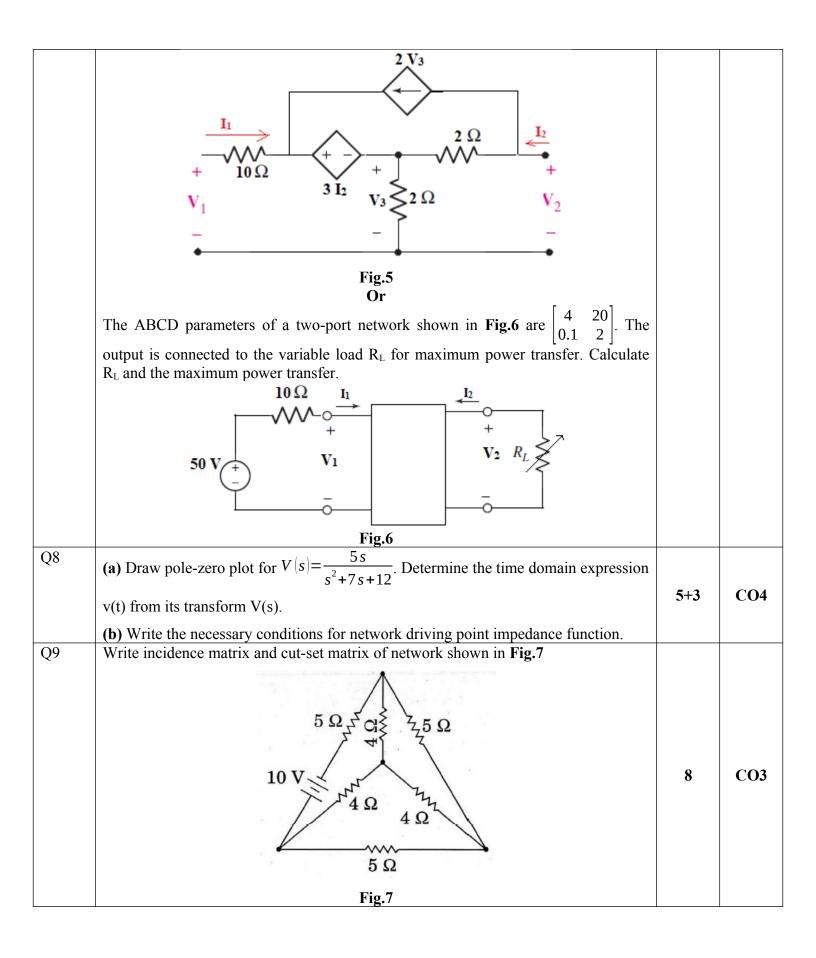
Programme Name: B Tech Mechatronics Semester: VII
Course Name: Network Theory
Course Code: ELEG204

Semester: VII
Time: 03 hrs
Max. Marks: 100

Nos. of page(s) : 4

Instructions:


• Attempt all questions as per the requirement.


• Assume any data if required and indicate the same clearly. Unless otherwise indicated symbols and notations have their usual meanings.

• Strike off all unused blank pages

SECTION A (20 Marks)

S.No.		Marks	CO
Q1	Determine and at terminals 1-2 of circuit shown in Fig.1 60Ω $1 \times 30 \Omega$ $2 \times 30 \Omega$	4	CO1
Q2	The Z-parameter matrix for two port network shown in fig. is $\begin{bmatrix} j2\omega & j\omega \\ j\omega & 3+j2\omega \end{bmatrix}$ Where entries are in Ω , suppose $Z_b(j\omega)=R_b+j\omega$ 1. Z_a Determine the value of Z_a , R_b and Z_c	4	CO2
Q3	A 2-port network is represented by the following equations: $V_1 = 60 \text{ I}_1 + 20 \text{ I}_2$ $V_2 = 20 \text{ I}_1 + 40 \text{ I}_2$ Calculate the ABCD parameters for this network.	4	CO2

Q10	(a) What is positive real functions? Write necessary and sufficient conditions for testing positive real functions.				
	(b) Test whether the following polynomial are positive real or not. $F(s) = \frac{10(s+1)^2}{(s+2)(s^2-6s+5)}$	5+3	CO4		
SECTION-C (40 Marks)					
Q11	(a) Find the resistance R_1 of Fig.8 such that the resistor R_4 will receive maximum power. $R_1 \longrightarrow R_3 \longrightarrow R_4 \longrightarrow S0 \Omega$ $R_4 \longrightarrow S0 \Omega$				
	Fig.8 (b) For a two-port network shown in Fig.9 the z-parameters are $[Z] = \begin{bmatrix} 10 & -6 \\ -4 & 12 \end{bmatrix} \Omega$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10+10	CO2		
Q12	Synthesize the following impedance function in Foster-I and Foster-II forms of LC network: $Z(s) = 8 \frac{(s^2 + 4)(s^2 + 25)}{s(s^2 + 16)}$ Or A network function has poles at -2, -5 and zeros at 0, -4, -6. Taking the scaling factor to be 1, synthesize the function (i) as an impedance function in Foster's form and (ii) as an admittance function in Cauer form.	20	CO4		