Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name: B Tech ECE

Course Name : Network Analysis

Course Code : ECEG2020

Semester : III

Time : 03 hrs

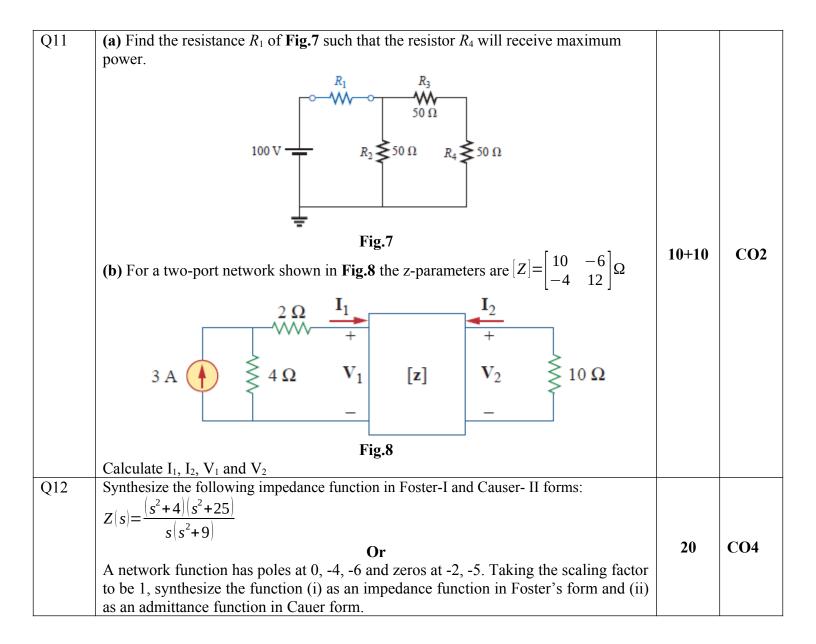
Max. Marks : 100

Nos. of page(s) : 4

Instructions:

• Attempt all questions as per the requirement.

• Assume any data if required and indicate the same clearly. Unless otherwise indicated symbols and notations have their usual meanings.


• Strike off all unused blank pages

SECTION A (20 Marks)

S.No.		Marks	CO
Q1	State the following network theorems: Thevenin's theorem and Tellegen's theorem.	4	CO1
Q2	Determine the number of possible trees of network represented with the following incidence matrix: 1 1 1 0 0 0	_	600
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	CO3
Q3	A 2-port network is represented by the following equations: $V_1 = 60 \text{ I}_1 + 20 \text{ I}_2$ $V_2 = 20 \text{ I}_1 + 40 \text{ I}_2$ Calculate the ABCD parameters for this network.	4	CO2
Q4	Write properties of Hurwitz polynomial.	4	CO4
Q5	Find the transfer function $H(s)=V_2(s)/V_1(s)$ for the given network shown in Fig.1 1 Ω 1 H 1 Ω 1 F V1 V1	4	CO5
	12		

	Fig.1		
	SECTION B (40 Marks)		
Q6	State superposition theorem and determine i_0 in the circuit shown in Fig.2 using superposition theorem. Linear network Fig.2 Fig.3 Or The Thevenin's equivalent at terminals of the linear network shown in Fig.3 is to be determined by measurement. When a $10\text{-k}\Omega$ resistor is connected to terminals $a\text{-}b$, the voltage is measured as 6 V. When a $30\text{-k}\Omega$ resistor is connected to the terminals, is measured as 12 V . Determine: (a) the Thevenin's equivalent at terminals $a\text{-}b$, (b) when a 20-k resistor is connected to terminals $a\text{-}b$.	8	CO1
Q7	For the network shown in Fig.4 determine the z and y parameters $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	CO2

Q8	Fig.5 (a) Draw pole-zero plot for $V(s) = \frac{5s}{s^2 + 7s + 12}$. Determine the time domain expression $V(t)$ from its transform $V(s)$. (b) Write the necessary conditions for network driving point impedance function.	5+3	CO4
Q9	Write incidence matrix and cut-set matrix of network shown in Fig.6 $ \begin{array}{c} 5 \Omega \times 25 \Omega \\ \hline 10 V \\ \hline 4 \Omega \\ \hline 4 \Omega \end{array} $ Fig.6	8	CO3
Q10	(a) What is positive real functions? Write necessary and sufficient conditions for testing positive real functions. (b) Test whether the following polynomial are positive real or not. $F(s) = \frac{10(s+1)^2}{(s+2)(s^2-6s+5)}$	5+3	CO4

