QUESTION PAPER

Name:

Enrolment No:

Semester: III

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Analog and Digital Electronics (ECEG-2002)

Program: B. Tech- Mechatronics

Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all the sections.

SECTION A (20 Marks)

S. No.	Answer all the questions.	Marks	CO
Q 1	Draw the circuit diagram of a single stage transistor amplifier, state the function of each component used in this circuit.	4	CO1
Q 2	The voltage gain of an amplifier without feedback is 1000. It decreases to 100 with feedback. Evaluate the feedback factor.	4	CO1
Q 3	Evaluate the range of the voltage gain adjustment in the circuit shown in Fig. (1) as, $V_1 = \frac{40k\Omega}{10k\Omega} + \frac{40k\Omega}{10k\Omega} + \frac{V_0}{10k\Omega}$ Fig. (1)	4	CO2
Q 4	Write the Boolean expression for the logic diagram given below and simplify it as much as possible.	4	CO3

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Q 5	Sketch the block diagram of the combinational and sequential logic circuits. How both are	4	CO4
	differing on the basis of memory element and time dependent operation. SECTION B (40 Marks)		
	A manyon all the amostions		
0.6	Answer all the questions.		
Q 6	Design a logic gate diagram of the obtained minimize expression using Universal 'NOR' gate. The Boolean expression is: $Y = A + B \left(AC + \left(B + \overline{C} \right) D \right)$	10	CO3
Q 7	Determine the output voltage of the circuit shown in Fig. (3). $1 \text{mV} \underbrace{\frac{1 \text{k} \Omega}{1 \text{k} \Omega}}_{\text{NWW}} \underbrace{\frac{2 \text{k} \Omega}{1 \text{k} \Omega}}_{\text{WW}} \underbrace{\frac{1 \text{k} \Omega}{1 \text{k} \Omega}}_{\text{Fig. (3)}} \underbrace{\frac{2 \text{k} \Omega}{1 \text{k} \Omega}}_{\text{Fig. (3)}}$	10	CO2
Q 8	Find the minimal sum of product for the Boolean expression $F = \sum m (1, 2, 3, 7, 8, 9, 10, 11, 14, 15)$ using Quine- McCluskey method.	10	CO3
Q 9	Attempt both the parts: (a) Elucidate the data transmission operation in the shift registers. (b) Design and analyze the operation of a 4-bit serial in- serial out shift register.	10	CO4
	SECTION-C (40 Marks)		
	Answer all the questions.		
Q 10	Design the combinational logic circuit for (i) an Even Parity Bit Generator for a 4-bit (A, B, C, D) input data (ii) an Odd Parity Bit Generator for a 4-bit (A, B, C, D) input data	10+10	CO3

Q 11	 Attempt both the parts: (a) Design a combinational logic circuit diagram that accepts a 4-bit Gray code (G4, G3, G2, G1) and provide 4-bit binary code (B4, B3, B2, B1). (b) Design and analyze the operation of a synchronous mode-6 Gray code converter using 'T' Flip-flop. OR 	10+10	CO3/ CO4
	Implement the following function using 8:1 MUX-		
	$F(x,y,z) = \sum m(0, 2, 3, 5)$		

QUESTION PAPER

Name:

Enrolment No:

Semester: III

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Analog and Digital Electronics (ECEG-2002)

Program: B. Tech- Mechatronics

Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all the sections.

SECTION A (20 Marks)

S. No.	Answer all the questions.	Marks	CO
Q 1	Given $h_{ie} = 2.4k\Omega$, $h_{fe} = 100$, $h_{re} = 4 \times 10^{-4}$ and $h_{oe} = 25\mu S$. Sketch the common emitter hybrid equivalent model.	4	CO1
Q 2	A single stage transistor amplifier has a voltage gain of 600 without feedback and 50 with feedback. Find the percentage of output which is feedback to the input side.	4	CO2
Q 3	What is the range of the output voltage in the circuit of Fig. (1). If the input voltage can vary from 0.1V to 0.5V ?	4	CO3

Q 4	Redraw the circuit given in Fig. (2) after simplification		
	A_B Y	4	CO3
	Fig. (2)		
Q 5	Attempt all the parts: (i) $(158)_{BCD} \rightarrow (?)_2 \rightarrow (?)_{10}$ (ii) $(1246)_{10} \rightarrow (?)_{Excess-3 \text{ code}}$ (iii) $(1011110)_2 \rightarrow (?)_{Gray \text{ Code}}$	4	CO4
	$(iii) \xrightarrow{\text{(1011110)}_2 \to \text{(?)}_{\text{Gray Code}}} $ SECTION B (40 Marks)		
	SECTION B (40 Marks)		
	Answer all the questions.		
Q 6	Minimize the minterm using (i) SOP and (ii) POS expressing using K-map $F(ABCD) = \sum m(2, 3, .6, 7, 10, 11, 12)$	10	CO4
Q 7	The circuit shown in Fig. (3) is an instrumentation amplifier. Determine the range which its gain can be varied if potentiometer is varied over its entire range.		
	V_{in} 1 $\frac{200 \text{k}\Omega}{100 \text{k}\Omega}$ $\frac{100 \text{k}\Omega}{100 \text{k}\Omega}$	10	CO2
Q 8	Draw the logic diagram using only two input NAND gates to implement the	10	CO3

	$F = \left(AB + \overline{A}\overline{B}\right) \left(C\overline{D} + \overline{C}D\right)$ following Boolean expression		
Q 9	Design and analyze the operation of parallel in- parallel out shift registor.		
	OR	e 10	CO4
	Design and analyze the operation of 3-bit up counter, which has counting sequence 000, 001, 010, 011, 100, 101, 110, 111, 000,		
	SECTION-C (40 Marks)		
	Answer all the questions.		
Q 10	Design the logic diagram using NAND universal gate of obtained reduced expression of minimal expression for $F = \sum m (6, 7, 8, 9) + d(10, 11, 12, 13, 14, 15)$ using Quine- McCluskey method.	20	CO3
Q 11	• Attempt both the parts: (a) Design a synchronous BCD counter using J-K Flip-flops.	it 10+10	CO4/ CO3
	(b) Design a circuit that can be built using AOI logic and outputs a '1' when a 4-bit hexa-decimal input is an odd number from 0 to 9.		
	OR		