Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course: Applied Numerical Methods

Programme: B. Tech. Electronics Engineering

Time: 03 hrs.

Semester: VII Code: MATH-306

Max. Marks: 100

Time: 03	Time: 03 hrs. Max. Marks:							
			SECTI	ON A				
S. No.							Marks	CO
Q 1	Given that $\frac{dy}{dx} = y - \frac{1}{2}$ method of fourth order		Find $y(0.1)$	taking h	=0.1 using	Runge-Kutta	4	CO5
Q 2	Prove that $\Delta^3 y_2 = \nabla^3 y$	5.					4	CO1
Q 3	Using Newton Raphson method, find the real root of $x \log_{10} x = 1.2$ correct to 4 decimal places.						4	CO3
Q 4	Solve the equations $\frac{d}{d}$ method and tabulate the	$\frac{y}{x} = 1 - y$ with the solution at			=0, y=0	using Euler's	4	CO5
Q 5	$\int \frac{dx}{x^2}$	g Simpson's			vals.		4	CO2
		<u> </u>	SECTI					
Q 6	Find the value of \log_{10} that:	58.75 using	Newton's ba	ckward diff	erence form	ula, given	10	CO1
	$\log_{10} x$ 1.60206	1.65321	1.69897	1.74036	1.77815	1.81291		
Q 7	Solve the following system of equations using Gauss elimination method: 10x + y + z = 12 $2x + 10y + z = 13$ $x + y + 3z = 5$						10	CO4
Q 8	A boundary value problem is defined by $y'' + y + 1 = 0 , 0 \le x \le 1$ where $y(0) = 0$ and $y(1) = 0$. Use finite difference method to determine the value of $y(0.5)$ where $h = 0.25$.					10	CO5	
9	Given that $\frac{dy}{dx} = \log_{10}(x)$ x = 0.2 and $x = 0.5$ using the second of the s	(x + y) with ag modified I	Euler's metho OR	od.		O. Find for blaces, given:	10	CO5

	$\frac{dy}{dx} = x - y$	ith initial o	ondition y	=1 when $x = 0$					
	W.	iui iiiiuai C	onunum	SECTIO					
Q10 (A)		grade of a observation 3	vessel of ns: 3 74.5	cooling water, 5 67		ime in mii	temperature in nutes from the 9 54.3	10	CO2
Q10(B)	Find the roo places.	10	CO3						
Q11(A)		the condi	tion $u(x)$ and to comp	$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ $(0.0) = \sin \pi x , 0$ $0 = u(0.6, 0.04)$ \mathbf{OR}) .		=u(1,t)=0. Use	10	CO6
Q11(B)	and 45.	le, estimate			s who obta	ained marl	ks between 40		
	No. of students The following the number of			OR eaths in four su	35		70-80 31 se groups. Find	10	CO1
	Age group Deaths	25-35 13229		35-45 18139	45-55 24225		5-65 1496		

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course: Applied Numerical Methods

Programme: B. Tech. Electronics Engineering

Time: 03 hrs.

Semester: VII Code: MATH-306 Max. Marks: 100

			SF	ECTION A				
S. No.							Marks	CO
	II D' 12 /1	1 , 1		0.1	. ,.	C: 41 4	Marks	CO
Q 1	Use Picard's method $\frac{dy}{dx} = 3x + y^2, y = 1$		tain y for 2	x=0.1 in 2	approximatio	ons. Given that	4	CO5
Q 2	Prove that $(E^{1/2} - E^{-1/2})(1 + \Delta)^{1/2} = 2 + \Delta$. Evaluate $\sqrt{12}$ correct to four decimal places by Newton Raphson method.							CO1
Q 3	Evaluate $\sqrt{12}$ correct to four decimal places by Newton Raphson method							CO3
Q 4	Solve the equations $\frac{dy}{dx} = \frac{y-x}{y+x}$ with the initial condition $x = 0$, $y = 1$ using Euler's method taking $h = 0.1$.						4	CO5
Q 5	Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ using Simpson's $1/3^{rd}$ rule with 4 subintervals.						4	CO2
		<u> </u>		ECTION B				
Q 6	From the following table of half-yearly premium for policies maturing at different ages, estimate the premium for policy maturing at the age of 63:					10	601	
	Age	45	50	55	60	65	10	CO1
	Premium (In rupees)	114.84	96.16	83.32	74.48	68.48		
Q 7	Solve the following system of equations using Gauss Jordan method: 2x + y + z = 10 $3x + 2y + 3z = 18$ $x + 4y + 9z = 16$						10	CO4
Q 8	A boundary value problem is defined by $y'' - y = 0$ where $y(0) = 0$ and $y(2) = 3.62686$. Use finite difference method to determine the value of $y(1)$ where $h = 0.5$.						10	CO5
Q 9	Given that $\frac{dy}{dx} = x$ x = 0.4 using modif	$-y^2$ with	the initial o			=0.2 y Find for $h=0.2$.	10	CO5

	OR dv		
	Use Runge Kutta method of fourth order to obtain $y = x = 0.2$, given: $\frac{dy}{dx} = x + y$		
	with initial condition $y = 1$ when $x = 0$ taking $h = 0.1$.		
	with initial condition taking is see.		
	SECTION-C		
Q10 (A)	Find $f'(1.1)$ from the following table:		
	x 1.0 1.2 1.4 1.6 1.8 2.0	10	CO2
	f(x) 0.0 0.1280 0.5540 1.2960 2.4320 4.0	10	
Q10(B)	Apply Graeffe's root squaring method to solve the equation with three squaring:	10	CO2
	$x^3 - 8x^2 + 17x - 10 = 0$	10	CO3
Q11(A)	Solve the heat conduction problem:		
	$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$		
	~ · · · · · · · · · · · · · · · · · ·		
	Crank Nicolson's method to compute $u(1/2,1/8)$. OR		
	Solve the Laplace equation in the following domain using Gauss-Jocobi method in		
	2 iterations:		
	Y T		
	1 1	10	CO6
	0		
	u_3 u_4		
	u_1 u_2 χ		
	0 0		
Q11(B)		10	CO1
Q11(B)	Estimate the value of $f(3.2)$ using only four of the given values applying Newton forward interpolation formula:	10	CO1
Q11(B)	Estimate the value of $f(3.2)$ using only four of the given values applying Newton forward interpolation formula:	10	CO1
Q11(B)	Estimate the value of $f(3.2)$ using only four of the given values applying Newton forward interpolation formula: $ x 0 1 2 3 4 5 6 $	10	CO1
Q11(B)	Estimate the value of $f(3.2)$ using only four of the given values applying Newton forward interpolation formula:	10	CO1
Q11(B)	Estimate the value of $f(3.2)$ using only four of the given values applying Newton forward interpolation formula:	10	CO1
Q11(B)	Estimate the value of $f(3.2)$ using only four of the given values applying Newton forward interpolation formula:	10	CO1
