Name:

Enrolment No:

Semester: V

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course: Design and Analysis of Algorithms (CSEG-320)

Programme: B. Tech- Cyber Law

Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions. Assume proper data, if necessary.

SECTION A S. No. Marks CO Q 1 Discuss the various stages of algorithm design and analysis process using flow chart. 4 CO₁ Q 2 Write short note on "Traveling Salesman Problem". 4 CO₃ Q 3 State the complexity for merge sort, quick sort an all three cases. 4 CO₂ Q 4 Sort the list E, X, A, M, P, L, E in alphabetical order using merge sort. 4 **CO4** Show one solution of N-queen problem for N=4. Q 5 4 CO₃ **SECTION B** Devise an algorithm for finding the maximum and minimum and explain it. Q 6 10 CO₄ Critically analyze the pseudocode of binary search method with proper example. Q 7 10 **CO1** State the complexity of binary search method. State and prove the Master's Theorem. Q 8 10 CO₂ Solve the following Knapsack problem with given capacity W: 5 using dynamic 09 10 **CO3** programming. Weight Value Item ₹12 1 2 2 1 ₹10 3 3 ₹20 2 ₹15 4 OR Apply Bellman-Ford algorithm on following graph. 10 CO₂ **CO4**

	SECTION-C			
Q 10	Consider the following set of frequencies, based on the first 8 Fibonacci numbers. a b c d e f g h 1 1 2 3 5 8 13 21	20	CO1 CO2 CO5	
Q 11	Consider the given weighted graph. Apply Floyd-Warshall algorithm for all pair shortest path and mention the algorithm.			
	OR			
	Apply Kruskal algorithm to obtain the MST of following graph. Mention each step involves in Kruskal algorithm. State the two applications of MST in real world.	20	CO1 CO2 CO4	

Name:

Enrolment No:

Semester: V

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course: Design and Analysis of Algorithms (CSEG-320)

Progra	mme: B. Tech.	-Cyber	Law							
Time: (Max. Ma	rks: 100	
Instruc	etions:				SECTIO	ON A				
S. No.									Marks	CO
Q 1	What are the	What are the features of efficient algorithm? Explain in brief.						4	CO1	
Q 2	What are the	similarit	ies and d	ifferences	between	quicksort	t and merg	esort?	4	CO2
Q 3	State Prim's	algorithn	n. Write e	each step i	nvolves	in Prim's	algorithm.		4	CO3
Q 4	Explain 'Big	Oh' nota	ation used	l to measu	re algori	ithm time	complexit	у.	4	CO2
Q 5	Explain 'Big Oh' notation used to measure algorithm time complexity. Explain 'Job sequencing with deadlines' with suitable example.						4	CO3		
	1	1			SECTIO		1			
Q 6	Devise an alg	gorithm f	or finding	g the maxi	imum an	d minimu	m and exp	lain it.	10	CO4
Q 7	Solve the following Knapsack problem with given capacity W: 15 using greedy method.								10	CO3
	Item	1	2	3	4	5	6	7		
	Weight	10	5	15	7	6	18	3		
	Value	2	3	5	7	1	4	1		
Q 8	Apply Bellman-Ford algorithm on following graph. Apply Bellman-Ford algorithm on following graph.						10	CO2 CO4		
Q 9	Briefly explain the concepts of P, NP and NP complete problems.						10	CO4		
	OR									
	What is "divide and conquer" strategy of problem solving? Mention each step involved in Merge sort with suitable example.						tep 10	CO1 CO3		

	SECTION-C		
Q 10	Consider the following character set with their frequency of occurrence in a particular text. A B C D E F 20 18 10 12 25 15 a) Draw the Huffman tree for the given data. b) Obtain the optimal Huffman code for the symbols. c) Compare the compression ratio, if these characters stored with a fixed length code of length 5.	20	CO1 CO2 CO5
Q 11	Consider the given weighted graph. 18 19 28 10 4 10 36 Apply Dijkstra's algorithm to find shortest path from s. Mention each step involved in Dijkstra's algorithm.	20	CO2 CO3
	OR State and explain the N-Queen problem. Solve N-Queen problem with N=8 and demonstrate all steps.	20	CO1 CO3