Name: **Enrolment No:** # UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018 Course: Signals & Systems Semester: VI **Program: B Tech Mechatronics** Time: 03 hrs. Max. Marks: 100 No. of page/s: 3 #### **Instructions:** • The question paper contains three sections namely Section-A, Section-B and Section-C. • Attempt all questions. The number of marks for each question is mentioned on the right side of it. • Assume any data if required and indicate the same clearly. Unless otherwise indicated symbols and notations have their usual meanings. • Strike off all unused blank pages ## **SECTION A (20 Marks)** | S. No. | | Marks | CO | |--------|---|-------|-----| | Q 1 | Determine whether the following signals are periodic or not. If yes find the fundamental time period. $x[n]=(-1)^{n^2}$ | 5 | CO1 | | Q 2 | (a) Define convolution integral and convolution sum.(b) Write the properties of the convolution integral | 2+3 | CO3 | | Q 3 | Given that $x(t)$ has the Fourier transform $X(\omega)$, express the Fourier transforms of the following signals (a) $x_1(t) = x(1-t) + x(-1-t)$ (b) $x_2(t) = x(3t-6)$ | 3+2 | CO2 | | Q 4 | The following facts are given about a real signal $x(t)$ with Laplace transform $X(s)$: (i) $X(s)$ has exactly two poles; (ii) $X(s)$ has no zeros in the finite s-plane (iii) $X(s)$ has a pole at $s = -1+j$ (iv) $X(0) = 8$ Determine $X(s)$ and specify its ROC | 5 | CO2 | | | SECTION B (40 Marks) | | | |-----|---|---------------|-----| | Q 5 | (a) Determine the Nyquist rate for the following signals: $x(t) = \frac{\sin 5\pi t}{\pi t} \cos 2\pi t + \frac{\sin 2\pi t}{\pi t} \sin 8\pi t$ (i) $x(t) = 5 + 7\cos 2\pi t + 6\sin^2 8\pi t$ (b) Write the equation for the signal depicted in fig. in terms of step function. | 2+3+5 | CO1 | | Q 6 | (b) Let x(t) be a continuous time signal and let y(t)=x(2t), consider the following: if x(t) is periodic, then y(t) is periodic. For this statement determine whether it is true and if so determine the relationship between the fundamental periods of the two signals. (a) Let X(e^{jω}) denote the Fourier transform of a discrete signal x[n] depicted in fig. | | | | ¥ ° | calculate the following values without explicitly evaluating $X(e^{j\omega})$
(i) $X(e^{j0})$; $X(e^{j\pi})$ and $\int_{-\pi}^{\pi} X(e^{j\omega})d\omega$
(ii) $\int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$ and $\int_{-\pi}^{\pi} \left \frac{dX(e^{j\omega})}{d\omega} \right ^2 d\omega$
(b) Find the inverse Z-transform of $X(z) = \frac{1-z^{-1}+z^{-2}}{(1-\frac{1}{2}z^{-1})(1-2z^{-1})(1-z^{-1})}$; with $ROC: 1 < z < 2$ | 5+5 | CO2 | | Q 7 | (a) Let the input of the system $x(t)=u(t-3)-u(t-5)$ and impulse response $h(t)=e^{-3t}u(t)$. Compute the output of the system y(t) using convolution integral. (b) Consider a causal LTI system that is characterized by the difference equations: $y[n]-\frac{3}{4}y[n-1]+\frac{1}{8}y[n-2]=2x[n]$ the difference equations: that is circuitsosed for a lore Find the system transfer function H(z) and the impulse response h[n]. | 6+4 | CO3 | | Q 8 | (a) A causal system with impulse response h(t) has its input x(t) and output y(t) related through a linear constant coefficient differential equation of the form $\frac{d^3y(t)}{dt^3} + (1+\alpha)\frac{d^2y(t)}{dt^2} + \alpha(1+\alpha)\frac{dy(t)}{dt} + \alpha^2y(t) = x(t)$ (i) Determine H(s); If $g(t) = \frac{dh(t)}{dt} + h(t)$ how many poles does G(s) have? | te 6+4 | CO3 | | | (ii) For what real values of the parameter α is the system guaranteed to stable? | | | |------|---|-------|-----| | | (b) Determine the Z-transform of the sequence $x[n] = na^n u[n]$ | | CO2 | | | SECTION-C (40 Marks) | | | | | Attempt any two questions from section-c | | | | | | | | | Q 9 | (a) The switch in the circuit shown in fig. is closed for a long time before $t = 0$, when it is opened at $t = 0$, find the currents $i_1(t) \wedge i_1(t)$ for $t > 0$. Using Laplace transform method only. | 10+10 | CO4 | | | (b) Also write the state equation for the above circuits for $for t > 0$ (Assume all initial conditions are zero for this part only). | | | | Q 10 | (a) Consider the system is characterized by the difference equation $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = -4x(t) - 3\frac{dx(t)}{dt}$ Determine the total output response of the system when the input is $x(t) = e^{-4t}u(t)$ and the initial conditions are $y \in A$ | 10+10 | CO3 | | | (b) A linear time invariant system is characterized by the system function $H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}$ Specify the ROC and determine h(n) when (i) the system is stable; (ii) the system is causal | | CO4 | | Q 11 | (a) Determine the output response of the system described by the following difference equation $y[n] = \frac{5}{6}y[n-1] - \frac{1}{6}y[n-2] + x[n]$ to the input signal $x[n] = \delta[n] - \frac{1}{3}\delta[n-1]$ o the input signal lowing difference equation input currents | 10+10 | CO3 | | | (b) The step response of a certain initially relaxed device is $y(t) = \left(1 - \frac{1}{2}e^{\frac{-t}{3}}\right)u(t)$. Determine the impulse response of the system of two such devices connected in cascade. | | | **Enrolment No:** ### UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018 Course: Signals & Systems Semester: VI **Program: B Tech Mechatronics** Time: 03 hrs. Max. Marks: 100 No. of page/s: 3 #### **Instructions:** - The question paper contains three sections namely Section-A, Section-B and Section-C. - Attempt all questions. The number of marks for each question is mentioned on the right side of it. - Assume any data if required and indicate the same clearly. Unless otherwise indicated symbols and notations have their usual meanings. - Strike off all unused blank pages #### **SECTION A (20 Marks)** | S. No. | | Marks | CO | |--------|---|-------|-----| | Q 1 | Determine whether the following system is linear, causal and stable. $y(t) = x(t) + 2x(\sin t)$ Where x(t) and y(t) are the input and output signals to the system respectively | 5 | CO1 | | Q 2 | (a) Consider a discrete-time signal $x[n] = 1 - \sum_{k=3}^{\infty} \delta(n-1-k)$ Show that x[n] can be expressed as $x[n] = u[Mn-n_0]$, also determine the values of M and n_0 | 5 | CO1 | | Q 3 | Find the Fourier transforms of the following signals | 5 | CO2 | | | (a) $x(t) = sgn(t) = \begin{cases} 1; t > 0 \\ 0; t = 0 \\ -1; t < 0 \end{cases}$ | | | |-----|--|-------|-----------------| | | $(\mathbf{b}) x(t) = u(t)$ | | | | Q 4 | Find the output response of an LTI discrete time system whose impulse response $h[n]=(2^n+3(-5)^n)u[n]$ and the input $x[n]=3^{n+2}u[n]$ | 5 | CO3 | | | SECTION B (40 Marks) | | | | | | | | | Q 5 | (a) Let x(t) be a continuous time signal and let y(t)=x(t/2), consider the following: if x(t) is periodic, then y(t) is periodic. For this statement determine whether it is true and if so determine the relationship between the fundamental periods of the two signals. (b) Determine whether the following signal is power signal or energy signal x(t)=e^{-a t}; a>0 | 5+5 | CO1 | | Q 6 | (a) Determine the DTFT of the following sequences: (i) x[n]={1,-1,2,2} (ii) x[n]=δ[n-1]+δ[n+1] (b) consider a signal y(t) which is related to two signals x₁(t)∧x₂(t) by y(t)=x₁(t-2)*x₂(t-3) Where x₁(t)=e^{-2t}u(t)∧x₂(t)=e^{-3t}u(t) Using the Laplace transform properties, determine the Laplace transform of y(t) | 4+6 | CO2 | | Q 7 | Suppose that the unit impulse response of an LTI system is a unit ramp, $h[n] = nu[n]$.
Compute the response of this system by means of convolution sum to a unit step input $x[n] = u[n]$. | 10 | CO3 | | Q 8 | The switch in the circuit shown in figure below has been closed for a very long time. If it opens at $t=0$ s, find $v_c(t)$ for $t>0$ using Laplace transform. Also determine the state equation for the above circuit | 10 | CO4 | | | SECTION-C (40 Marks) Attempt any two questions from section-c | | | | 0.0 | | | | | Q 9 | (a) Consider a continuous-time LTI stable system characterized by the following | 10+10 | CO ₃ | | | differential equation: $\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t)$ Determine the system impulse response h (t). Suppose that the input signal $x(t) = e^{-t} u(t)$, determine the output response $y(t)$. (b) Check whether the following systems are causal and stable having the system transfer function (i) $H(s) = \frac{1}{s^2 + 5s + 6}$ when the ROC is $\Re[s] > -2 \land -3 < \Re[s] \leftarrow 2$ (ii) $H(z) = \frac{-1 - 0.4 z^{-1}}{1 - 2.8 z^{-1} + 1.6 z^{-2}}$ when the ROC is $ z > 2 \land z < 0.8$ | | | |------|--|-------|-----| | Q 10 | (a) Consider an automobile suspension system as shown in fig. Find the system transfer function. Where x_0 and x_i are the output and input to the given suspension system (b) A linear time invariant system is characterized by the system function $H(z) = \frac{3-4z^{-1}}{1-3.5z^{-1}+1.5z^{-2}}$ Specify the ROC and determine h(n) when (i) the system is stable; (ii) the system is causal | 10+10 | CO4 | | Q11 | (a) Consider a causal LTI system that is characterized by the difference equations: y[n]-3/4 y[n-1]+1/8 y[n-2]=2x[n] the difference equations: that is circuitsosed for a lore. Find the system transfer function H(z) and the impulse response h[n]. (b) Consider a continuous-time LTI system for which the input x(t) and output y(t) are related by the differential equation | | CO3 | | (ii) Determine the impulse response for each of the cases: the system is stable; the | | |--|--| | system is causal; and the system is neither stable nor causal. | |