Name: **Enrolment No:** ## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018 Course: Well Stimulation Semester: 6th Program: B.Tech (APE upstream) **Time:** 03 hrs. **Max. Marks:** 100 No. of Pages: 4 ## **Instructions:** 1. Neat diagrams must be drawn wherever necessary. 2. Use a non-programmable calculator 3. Assume suitable data, if necessary and clearly state it. ## **SECTION A** | S. No. | | Marks | CO | | |--------|--|-------|-----|--| | Q 1 | Explain the insitu rock stresses acting on an underground formation: - | 4 CO3 | | | | Q 2 | Explain the procedure of step rate (up) test performed during hydraulic fracturing job. | 4 CO: | | | | Q 3 | A shale gas reservoir has undergone hydraulic fracturing. Using the inflow equations, drainage area concept and fracture conductivity defined skin factor following data is given below. Wellbore radius = 0.35 ft Drainage radius = 1790 ft., Skin factor = -5.85 What would be the fold of increase in well productivity after fracturing job? | 4 | CO1 | | | Q 4 | Define perforation and briefly explain the procedure of determining the depth of perforation: - | 4 CO4 | | | | Q 5 | Explain various additives used during matrix acidization process of the formation: - | 4 | CO3 | | | | SECTION B | | | | | Q 6 | Discuss in detail different types of fracturing fluids and additives added for a 40 ton fracturing job: - | 8 | CO6 | | | Q 7 | Explain in detail the 3 different stages involved in hydraulic fracturing job with equipment's used: - | | CO5 | | | Q 8 | Explain the following terms/statements: - (a) Tree Saver (b) Shaped charge (c) Fracturing fluid rheology (d) Methods to evaluate formation damage | 8 | CO2 | | | Q 9 | Draw and explain in detail surface read out of pressure variation during hydraulic fracturing job on a pressure Vs time plot | 8 | CO5 | | | Q 10 | correlation. Also, calcon Following data is given Reservoir permeability Fracture permeability = Fracture width = 0.25 in Fracture half-length = 3 Wellbore radius = 4.25 Fluid viscosity = 1 cP Total compressibility (or Rock porosity = 15 % | for the fractured well: - = 1mD 100 Darcy a. 00 ft in. bil and rock) = 10 ⁻⁵ psi ⁻¹ | ring job from Cincoley Samanie for pseudo radial flow to develor | 8 | C05 | |------|---|---|--|---|-----| | | | SECTION | ON-C | | | | Q 11 | (a) A sandstone at a depth of 11,000 ft has a Poison's ratio of 0.25 and a poroelastic constant of 0.71. The average density of the overburden formation is 165 lb/ft³. The pore pressure gradient in the sandstone is 0.38 psi/ft. Assuming a tectonic stress of 2,000 psi and a tensile strength of the sandstone of 1,000 psi, predict the breakdown pressure for the sandstone. (b) Given the formation sand sieve analysis as shown in figure1. Determine median sand size & uniformity coefficient of sand. Also Select the proper gravel size (i.e. gravel diameter) for a well that is expected to produce at a rate such that fluid velocity through half of open screen area is about 0.02 m/sec: - Use Schwartz gravel pack selection criteria and mention the criteria. (attach the figure 1 given in question paper with your answer sheet) | | | | CO5 | | Q 12 | (a) It has been decided that a low-permeability formation, consisting of three separate producing zones, will have to be fractured to produce at economic rates. Before perforating, reasonable injection rates for fracturing (4 m³/min) and large pressure drops across all perforations (3.5 MPa) have been selected as being suitable. Calculate the surface pressure and the number of perforations required in each zone such that the proportion of fracture fluid entering each of the zones is proportional to the height of the zones Well data: Zone | | | | CO6 | Fracture gradient = 15.8 kPa/m of depth 6.5 lb/ft tubing used Perforation ID = 0.76 cm Fracturing fluid density = 1042 kg/cm³ Water based fracturing fluid is used Friction pressure losses = 8.2 kPa / m of depth Perforation orifice coefficient = 0.9 Calculate fracturing fluid surface injection pressure in kPa (b) A sandstone with a porosity of 20 % containing 10 vol.% calcite (CaCO₃) is to be acidized with HF/HCl mixture solution. A preflush of 15 wt.% HCl solution is to be injected ahead of the mixture to dissolve the carbonate minerals and establish a low pH environment. If the HCl preflush is to remove all carbonates in a region within 1 ft beyond a 0.328-ft radius wellbore before the HF/HCl stage enters the formation, what minimum preflush volume is required in terms of gallon per foot of pay zone? Following data is given: Molecular weight of calcite = 100.1 lb/mol Molecular weight of HCl = 36.5 lb/mol Density of calcite = 169 lb/ft^3 Specific gravity of HCl = 1.07 CO₄ Figure 1.