T A				
N	a	m	Δ	•
1.4	a		•	•

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: System Analysis & Optimization Semester: 2

Program: M.Tech. Pipeline Engineering

Time: 03 hrs.Max. Marks: 100

Instructions:

SECTION A (Attempt All Questions)

S. No.		Marks	CO
Q.1	Explain the deterministic and Stochastic techniques for solving pipeline optimization problems		CO1, CO2
Q.2	2 Explain the importance of using evolutionary methods over Classical optimization problems		CO2
Q.3	Discuss the difference between behavior, design and side constraints		CO1
Q.4	Mention four application of optimization in pipeline industry.		CO5
Q.5	Briefly discuss the Genetic Algorithm to minimize a function.		CO3, CO4
	SECTION B		
	(Attempt All Questions)		
Q.5	A pipeline operator wishes to minimize the cost of pipeline network, Using		CO4
	Dichotomous search method, find the minimum of the function $f = x(x-1.5)$ in the	10	
	interval (0.0, 1.00) to within 10% of the exact value		
Q.6.	Temperature, pressure, and composition of gas mixtures in deep water pipelines are		
	the factors that promote rapid formation of gas hydrates. To avert this dilemma, it is		
	more significant to find out the optimum temperature and pressure in subsea		
rev	pipelines to limit the formation of gas hydrates. Researches carried on lab scale		
	reveals that gas hydrate formation depends on temperature and pressure according to	10	
	the following relation:		CO4
	$f(P,T) = 6P^2 - 6PT + 2P^2 - P - T$		
	Take starting point as: $X(P,T) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$		

	Using Fletcher Reeves method, find the values of the variables Pressure and Temperature		
	that minimizesthe gas hydrate formation.		
Q.7.	Use exterior penalty method to minimize the function given by: $f = 2x_1^2 + 3x_2^2 + x_1 + x_2$ $S.T:$ $g(x_1) = 5 - x_1 \le 0;$ $g(x_2) = -x_2 \le 0$	10	CO3
Q.8.	Use steepest descent method to minimize the following function: $f(x) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2;$ Take the starting point as: $X = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	10	CO2, CO3
	SECTION-C (Attempt Any Two Questions)		
Q.9.	Using Golden Section method minimize the function given by:		
	$f(x) = 0.65 - \left(\frac{0.75}{1+x^2}\right) - 0.65 \tan^{-1}\left(\frac{1}{x}\right)$	20	CO5
	Use the interval $(0,3)$ and n=6;		
Q.10	Using Kuhn Tucker method minimize the following function: $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 40x_1 + 20x_2;$ $g_1 = x_1 - 50 \ge 0;$ $g_2 = x_1 + x_2 - 100 \ge 0;$ $g_3 = x_1 + x_2 + x_3 - 150 \ge 0$	20	СОЗ
Q.11	Using Genetic Algorithm, minimize the following function: $f(x) = x_1 + 2x_2 + 3x_3 + 4x_4 - 30$; $0 < x_i < 30$ Use cross over rate as 0.25 and mutation rate as 0.1.	20	CO4, CO5