UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: CAD/CAM (GNEG 365) Program: B TECH (Mechatronics) Semester: VI

Time: 03 hrs. Max. Marks: 100

Instructions:

SECTION A				
S. No.	Statement of question	Marks	CO	
Q 1	Briefly describe the role of engineering analysis process in the product design cycle.	5	CO1	
Q 2	Explain computer graphics concept in brief.	5	CO1	
Q 3	Discuss advantages and limitations of NC systems.	5	CO4	
Q 4	Write down the advantages to be gained by the adoption of CAM.	5	CO4	
	SECTION B			
Q 5	Define tool compensation. Justify its need and explain how it is incorporated in the program.	10	CO5	
Q 6	Show that a 2-D reflection through the x-axis, followed by a 2-D reflection through the line $y=-x$, is equivalent to a pure rotation about the origin. OR Find the reflection matrix when the axis of reflection is given by equation $Y=3x$. Find the reflection of point $(6,5)$ about this line.	12	CO2	
Q 7	Explain what you understand by FEM. Define the terms: nodal point, element and degree of freedom.	8	CO3	
Q 8	Write a C/C++ program to implement Bresenhem's circle algorithm.	10	CO2	
	SECTION-C			
Q 8	For the four bar truss shown in figure below, determine the displacement at the nodes and the stress in each member. Area of cross-section of each member is 200 mm^2 . Take $E = 200 \text{ GPa}$.	20	CO3	

