

1	N	a	m	Δ	•

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018

Course: Process Control – ICEG 341 Semester: VI

Program: B.Tech. Instrumentation and Control

Time: 03 hrs. Max. Marks: 100

Instructions:

1 1	swers should be brief and concise.					
2) As	sume any missing data. SECTION A					
All questions are compulsory						
S. No.	Question statement	Marks	CO			
Q 1	Differentiate between a Servo and a Regulator control system.	5 CO1				
Q 2	Elucidate the working of a "heat exchanger".	5	CO2			
Q 3	Elucidate block diagram of a "Feedforward Control System". How is it different from a feedback control system?	5	CO3			
Q 4	As a process control engineer briefly explain the process conditions when a designer opts for "Inferential Control".	5	CO3			
	SECTION B					
Q 5	Explain the term " Inverse Response " with respect to a process control system. How does it affect the process output? Draw the time response for such systems.	10	CO2			
Q 6	Deduce the mathematical model of a "MIMO" process model. Explain the term "interaction" of the loops.		CO2			
Q7	For boiler steam distribution system design following control configurations: a. "Ratio control" system while considering the high pressure line as the wild stream and low pressure line as controlled stream. b. "Protection control loop" for high pressure line.	5+5	CO3			
Q 8	For a closed loop process as describe in figure 1. Enumerate the effect of adding	10	CO4			
	an "Integral controller" for a first order process. Here assume $G_v = G_m = 1$.					
	OR					
	For a closed loop process as describe in figure 1. Enumerate the effect of adding a					
	"Derivative controller" for a first order process. Here assume $G_v = G_m = 1$.					

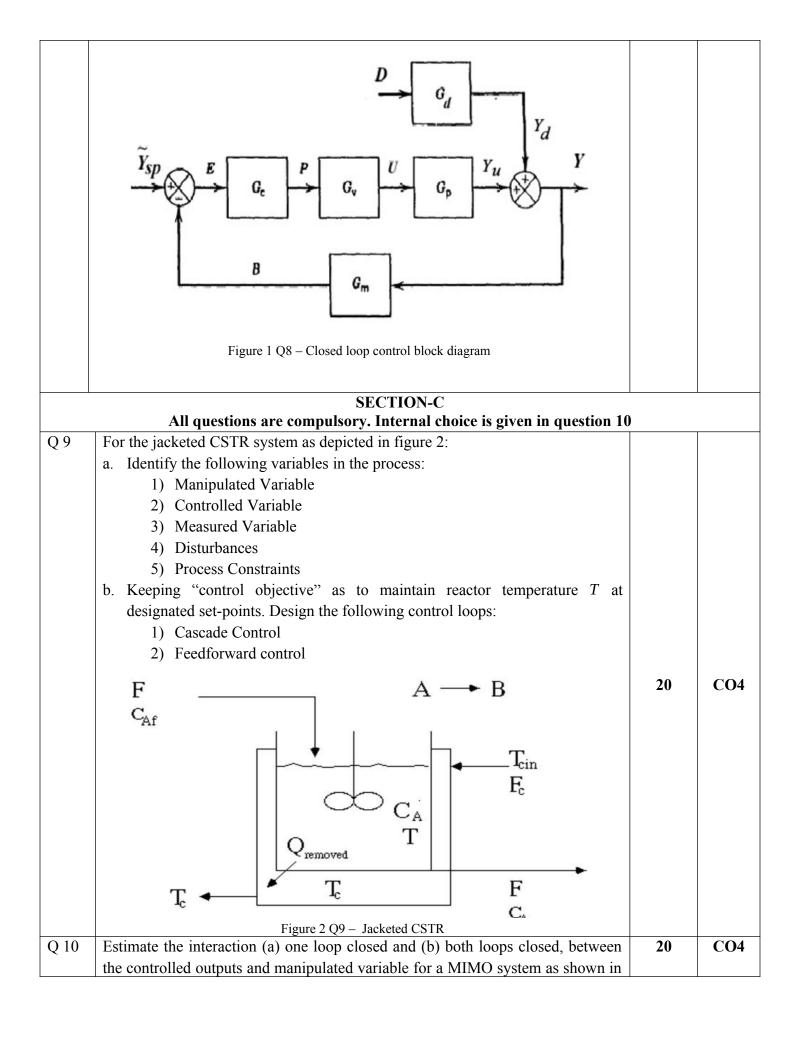


Figure 3 Q10 – MIMO process

OR

Attempt the following questions:

a. Design an "Auctioneering" control system for the following temperature control application. [5 marks]

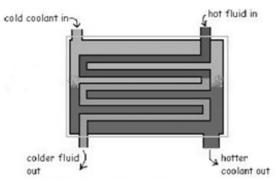


Figure 4 Q10 – Temperature control

b. Design an "Override control" for the following process. Identify the controlled, measured, and disturbance variables. Also deign a "feedback" controller for the same. The control objective is to maintain the temperature of the heated stream coming out of heat exchanger at a desired set-point. For this purpose superheated steam is fed though tube.

[15 marks]

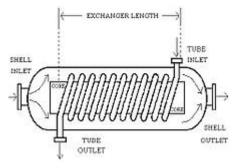


Figure 5 Q10 - Heat exchanger