	Roll No:
UPES	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, April 2018
Programme: B.Tech (Mechatronics)
Course Name: Optimization Techniques

Course Code: MEEL-432

No. of page/s: 03

Semester – VIII Max. Marks : 100

Duration : 03 Hrs

Instructions:

Attempt all questions from **Section A** (each carrying 4 marks); attempt all questions from **Section B** (each carrying 10 marks); attempt all questions from **Section C** (each carrying 20 marks).

Carryii	carrying 10 marks); attempt all questions from Section C (each carrying 20 marks).				
Section A					
	(Attempt all questions)				
1.	Consider the following linear programming problem. Introduce slack variables to				
	the given inequality constraints, and hence set up the initial simplex table.				
	$\max 3x_1 + 5x_2 + 4x_3$				
	subject to $2x_1 + 3x_2 \le 8$	[4]	CO1		
	$x_1 + 5x_3 \le 10$				
	$3x_1 + 2x_2 + 4x_3 \le 15$				
	$x_1, x_2, x_3 \ge 0.$				
	Find the dual of the following problem.				
2.					
	$\max 2x_1 + 3x_2 + x_3$	F 43	~~		
	subject to $4x_1 + 3x_2 + x_3 = 6$	[4]	CO2		
	$x_1 + 2x_2 + 5x_3 = 4$				
	$x_1, x_2, x_3 \ge 0.$				
	Consider the function of three variables given by				
	g ·				
3.	$f(x_1, x_2, x_3) = x_1^2 - x_1 - x_1 x_2 + x_2^2 - x_2 + x_3^4 - 4x_3.$	[4]	CO4		
		ניין	CO4		
	Compute the Hessian matrix, $H(x_1, x_2, x_3)$.				
	Dut the following muchlem in a standard (maximization) form				
	Put the following problem in a standard (maximization) form.				
	$\min_{x_1} 3x_1 - 4x_2 - x_3$				
4.	subject to $x_1 + 3x_2 - 4x_3 \le 12$	F 43	004		
	$2x_1 - x_2 + x_3 \le 20$	[4]	CO1		
	$x_1 - 4x_2 - 5x_3 \ge 5$				
	$x_1 \ge 0$, x_2 and x_3 are unrestricted in sign.				

5.	Find the local maximum and minimum, if any, of the following function: $f(x) = x^3 - 3x^2 + 3x - 1.$	[4]	CO4			
	SECTION B (Q6-Q8 are compulsory and Q9 has internal choice)					
6.	Solve the following linear programming problem by Simplex method. $\max 3x_1 + 9x_2$ subject to $x_1 + 4x_2 \le 8$ $x_1 + 2x_2 \le 4$ $x_1, x_2 \ge 0.$	[10]	CO1			
7.	Find the minimum of the function $f(\lambda) = 0.65 - \frac{0.75}{1+\lambda^2} - 0.65\lambda \tan^{-1}\frac{1}{\lambda}$ using Newton method with the starting point $\lambda_0 = 0.1$. Perform three iteration.	[10]	CO3			
8.	Perform two iteration tables, to solve the following LPP by Big- M method $\max 2x_1 + x_2 + 3x_3$ subject to $x_1 - 2x_2 + 3x_3 = 2$ $3x_1 + 2x_2 + 4x_3 = 1$ $x_1, x_2, x_3 \ge 0.$	[10]	CO1			
9.	Find the minimum of the function $f(x) = x(x-1.5)$ in the interval $(0.0,1.0)$ to within 10% of the exact value, by interval halving method. \mathbf{OR} Find the minimum of the function $f(\lambda) = \frac{\lambda}{\log_e \lambda}$ using Secant method with the starting point $\lambda_0 = 0.1$. Perform three iterations.	[10]	CO3			

SECTION C					
(Q10 is compulsory and Q11 has internal choice)					
10A.	Consider the function $f(x_1, x_2) = x_1^3 + x_2^3 - 3x_1x_2.$				
	 a. Find the critical points for the function f(x₁, x₂). b. Compute the Hessian matrix corresponding to each critical point. c. Find the local maximum and minimum, if any, using Hessian matrix. 	[10]	CO4		
	Find the dual of the following problem.				
	$\min 3x_1 + 2x_2$ subject to $7x_1 + 2x_2 \ge 30$				
10B.	$5x_1 + 4x_2 \ge 30$	[10]	CO2		
	$2x_1 + 8x_2 \ge 16$				
	$x_1, x_2 \ge 0.$				
	Hence, set up initial table to solve the dual problem by Big-M method.				
	Find the dual of the following problem.				
	$\max x_1 + 6x_2$				
	subject to $x_1 + x_2 \ge 2$				
	$x_1 + 3x_2 \ge 3$				
	$x_1, x_2 \ge 0.$				
	Use graphical method to solve the primal and the dual, and show that the optimal values of the objective functions of the problems are equal.				
11.	OR	[20]	CO2		
	By solving dual of the LPP				
	$\min 2x_1 + 2x_2$				
	subject to $2x_1 + 4x_2 \ge 1$				
	$x_1 + 2x_2 \ge 1$				
	$ \begin{aligned} 2x_1 + x_2 &\ge 1 \\ x_1, x_2 &\ge 0, \end{aligned} $				
	show that the optimal value of the primal problem is $\frac{4}{3}$.				