Page |74

CHAPTER -4

THEORETICAL DEVELOPMENTS IN EXPERT SYSTEMS

Knowledge is a theoretical or a practical understanding of a subject or a domain.
It is also a sum of what is currently known. It is symbolized with power. Those
who possess knowledge are termed as ‘experts’. The term ‘domain expert’ is used
for a person who has deep knowledge of both facts and rules and has strong
practical experience in a particular domain. In general a domain expert is a skilful
person who can do challenging domain specific tasks with ease, applying their
expertise with an optimum level of accuracy that non-experts may find difficult to

accomplish.

The human mental process of problem solving, decision making is too complex to
be represented in the form of algorithms but, most experts are capable of

expressing their knowledge in the form of ‘rules’[Negnevitsky,2002].

4.1. EXPERT SYSTEMS

Expert systems are the first truly useful applications of Al. These are the systems
that can be made to hold the knowledge of a specific domain or area which has
been solicited from human experts. The system is also embodied with facts and
rules which the human experts use to reason and come up with decisions. The
system then puts relevant questions, elicits answers from the users, collects
information and uses it to apply rules and comes up with conclusions in the same
manner as a human expert would. [Golabchi., 2008]. The system can also be given

the capability to provide explanations for the reached conclusions in the same

UPES |

Page |75

manner, as a human expert would present his justifications [HSu and Su, 1991; Wick

and Slagle, 1989].

4.2 ADVANTAGES AND LIMITATIONS OF EXPERT SYSTEMS

Knowledge Availability: Once the system is up and running then that particular
domain of knowledge will be available for use anywhere, any time. In other
words, expertise is available whenever the system is turned on. Each rule is an
independent piece of knowledge and the very style of representing knowledge in

the form of rules, leads to self-documentation of knowledge for later recall.

Cost effectiveness: Once the preliminary expenses are paid then, except for
maintenance costs which are relatively small, the expert systems are very cost

effective.

Integration: There is high risk factor in most of the exploration sites. Hence, this
gives a very good reason to have expert systems designed, integrated with other
pre-existing systems and functionally put to use. Doing integrated exploration
helps decrease the risk factor. Expert systems can be built in almost any area of
exploration: field geology, mineralogy, petrography, seismic acquisition,
processing, interpretation, etc. By using expert systems, integrated exploration

can be performed and better results can be obtained.

Regular knowledge update: After an expert system has been developed, it can be

updated more easily and economically compared to training a new expert.
Dealing with incomplete and uncertain knowledge: Most rule base expert systems

are capable of representing the incomplete and uncertain knowledge. There are

advanced techniques available like fuzzy-sets etc which are useful in such situations.

UPES |

Page |76

Expert systems as trainers: Expert systems can be used as trainers and educators

for new engineers since they can provide reasoning for all decisions.

However, there are some disadvantages also for rule-based expert systems.

Opaque relations between rules: Although, the individual production rules are
relatively simple, and self-documented, their logical interactions within a large set of
rules may be opaque. Rule-based systems make it difficult to observe how individual

rules serve the overall strategy.

Ineffective search strategy: The inference engine applies an exhaustive search
through all the production rules during each cycle. Expert systems with large set
of rules (over 100 rules) can be slow, and thus large expert systems may be

unusable for real-time applications.

Inability to learn: In general, the expert systems do not have ability to learn from
the experience. Unlike, a human expert, who knows when to ‘break the rules’, an
expert system cannot automatically modify its knowledge-base, or adjust existing
rules or add new rules. The knowledge-engineer is still responsible to revise and

maintain an expert system.

Currently, research is on to explore the number of ways in which expert systems
can be put to use in various activities ranging from initial steps of exploration, to

well- completion to enhanced oil recovery [Sasikumar et al., 1993].

4.3. STRUCTURE OF EXPERT SYSTEMS

In early seventies, Newell and Simon from Carnegie Mellon University proposed
a production model for expert systems which serves as a foundation for modern
day expert systems. The production model is based on the idea that humans solve

problems by applying their knowledge (expressed as production rules) to a given

UPES |

Page |77

problem represented by problem-specific information. The production rules are
stored in the long term memory and problem-specific information is stored in the

short-term memory [Newell, 1969]. The Figure 4.1 shows the production model.

Source: Negnevitsky, Pearson Education, 2002

Long-term Memory Short-term Memory

Production Rule I Fact

REASONING

[Conclusion]

Figure 4.1 Production Model

Further the production model idea was enhanced into rule-based expert system.

Figure 4.2 shows the structure of a typical rule-based expert system.

Source: Negnevitsky, Pearson Education, 2002

Enowledge Base

Rule: IF-THEN

Inference Engine
i:

7
Explanation Facilities
i
Uszer Interface

z’l'l‘_.
— -i -
¢ s =
- User

g

Figure 4.2 Structure of Rule-based Expert System

UPES |

Page |78

Expert systems consist of four main parts — the workspace, the knowledge base,
the inference engine, and the explanation subsystem. Each plays an important role

and these parts interface with each other in various complex ways.

4.3.1. Workspace/Working Memory

It is the space required for user interface, the area where knowledge extracted
from knowledge base is temporarily kept, and the area where calculations are
performed. Usually, the larger the workspace, the better the expert system

operates.

4.3.2. Knowledge base

It is the part of the expert system that holds the knowledge of a particular domain.
The knowledge representation can be done in different ways such as in the form
of rule-base, in the form of frames, in form of semantic networks, in form of

abstracts or in form of scripts.

4.3.2.1 ‘Rules’ as a knowledge representation technique

The term ‘rule’ in artificial intelligence systems which is a very common
knowledge representation technique can be defined as an Gf.......then~ structure
that relates the given information or facts in the ‘IF’ part to some action in the

‘THEN’ part.

If (condition)
Then (action)

A rule provides some description of how to solve a problem. Rules are relatively

easy to create and understand.

UPES |

Page |79

The ‘if’ part is called an ‘antecedent’ or premise or the condition, and the ‘then’
part is called the consequent or conclusion or an action. The antecedents are
evaluated based on what is currently known about the problem being solved
(contents of working memory/workspace). Each antecedent of a rule typically

checks if the particular problem instance satisfies some condition.

A rule can have multiple antecedents, joined by the keywords, AND

(conjunction), OR (disjunction) or a combination of both.

-

~
If <Antecedent 1> AND <Antecedent 2> AND <Antecedent n>
Then

<Consequent>

If <Antecedent 1> OR <Antecedent 2> OR <Antecedent n>
Then

<Consequent>

The antecedent of the rule incorporates two parts: an object (linguistic object) and
its value. The object and its value are linked by an operator. The purpose of the
operator is to identify the object and assign it the value. The operators such as ‘is’,
‘is not’, ‘are’, ‘are not’ are used to assign a symbolic value to the linguistic
object. The expert systems can also use mathematical operators such as >’
(greater than), ‘<’ (lesser than), to define an object as numerical and assign it to

the numerical value.
The consequents of a rule typically alter the working memory (WM), to

incorporate the information obtained by application of a rule. This could mean

adding more elements to the WM, modifying an existing WM element or even

UPES |

Page | 80

deleting WM elements. They could also include actions such as reading input
from a user, printing messages, accessing files, etc. When the consequents of a
rule are executed, the rule is said to have been fired. Rules can represent relations,

recommendations, directives, strategies and heuristics.

Sometimes the knowledge which is expressed in the form of rules is not known
with certainty. In such cases, typically, a degree of uncertainty is attached to the

rules. These degrees are called certainty factors [Buchnan and Shortliffe, 1984].

4.3.3. Inference Engine

It is the program part of an expert system. It represents a problem solving model
which uses the rules in the knowledge base and the situation-specific knowledge
in the WM to solve a problem. Given the contents of the WM, the inference
engine determines the set of rules which should be considered. These are the rules
for which the consequents match the current goal of the system. The set of rules
which can be fired is called the conflict set. Out of the rules in the conflict set, the
inference engine selects one rule based on some predefined criteria. This is called

conflict resolution. A rule can be fired if all its antecedents are satisfied.

The matching of the antecedents to the facts produces inference chains (reasoning
chains). The inference chain indicates how an expert system applies the rules to
reach a conclusion. Figure 4.3 shows the match-fire procedure and Figure 4.4

exemplifies the reasoning chain.

UPES |

Page |81

Source: Negnevitsky, Pearson Education, 2002
. " .

Fact: B1sy

March Fire

Knowledge Base

Rule: IF 4 15 x THEN B 15 ¥

Figure 4.3 showing the match-fire procedure

Source: Negnevitsky, Pearson Education, 2002

Rulel: 1IF Y 1s true
AND D is true
THEN Z is true

Rule2: TIF X 1s true .
AND B is true
AND E i1strue
THEN Y 1s true

il
%H

Rule3: 1IF A 1s true
THEN X i1s true

Figure 4.4 Example of a reasoning chain

UPES |

Page | 82

If the value of an antecedent is not known (in the WM), the system checks if there
are any other rules with that as a consequent, thus setting up a sub-goal. If there
are no rules for that antecedent, the user is prompted for the value and the value is
added to the WM. If a new sub-goal has been set up, a new set of rules will be
considered in the next cycle. This process is repeated till, in a given cycle, there
are no sub-goals or alternatively, the goal of problem-solving has been derived.
This inferencing strategy is called backward chaining, as it reasons backward
from the goal to be derived. There is another strategy called forward chaining
where the system works forward from the information it has in the working
memory. In forward chaining, the conflict set will be created by rules which have
their antecedents true in a given cycle. The system continues till the conflict set

becomes empty.

Forward chaining methods are best for synthesis. If some of the elements of a
particular case are known but not in its complete form, then this method can be
used, profitably. If the end product is known, but the elements that make it up are
not known, then backward chaining can be used for representation of knowledge.
Backward chaining works in a goal oriented manner [Krishnamoorthy and Rajeev,

1996].

4.3.4. Explanation Subsystem

Expert systems typically need to be able to provide explanations regarding the
conclusions they make. Most expert systems provide a mechanism whereby the

user can ask questions about:
e Why a particular question is being asked?
e How the system came to a particular conclusion?
Providing explanations is essential in complex domains for user to understand

how the system works and determine whether its reasoning is correct or not.

UPES |

Page | 83

Typically the system keeps track of rules (knowledge), it is using and provides
explanations based on a translation on these rules into English. Figure 4.5 shows

the structure of a complete rule-based expert system.

Source: Negnevitsky, Pearson Education, 2002

Bhpference Engine

i

Explanation Facilies

I 1
= Developer
User Interface FoderEars

e e

A - 2
{:U:a —:} fﬂm‘lﬂcge Eniﬂ.n.eer-:'
C Bt D

Figure 4.5 Structure of Expert System

In expert system, the knowledge is separated from its processing (the knowledge-
base and the inference engine are split up). In case of other conventional computer
programs, the knowledge and the control structures that process this knowledge
are mixed up. This mixing up leads to difficulties in understanding and reviewing
the program code, as any change to the program code, would affect both the

knowledge and its processing [Watermann, 1986].

When expert system shells are used then the knowledge-engineer or an expert

simply needs to enter rules into the knowledge-base. Each new rule adds new

UPES |

Page | 84

knowledge to the expert system and makes it smarter. Table 4.1 shows the
comparison between human expert, an expert system and conventional computer

programs.

Source: Negnevitsky, Pearson Education, 2002

Human Experis

Expert Systems

Conventional Programs

Use inexact reasoning and
can deal with incomplete.
uncertain and fuzzy
information.

Permit inexact reasoning
and can deal with
incomplete, uncertain and
fuzzv data.

Work only on problems
where data is complete
and exact.

Can make mistakes when
information is incomplete
or fuzzy.

Can make mistakes when
data is incomplete or
fuzzv.

Provide no solution at all,
of a wrong one, when data
15 incomplete or fuzzy.

Enhance the quality of
problem solving via vears
of learning and practical
training. This process is
slow_ inefficient and
exXpensive.

Use knowledge in the
form of mles of thumb or
heuristics to solve
problems in a narrow
domain.

Enhance the quality of
problem solving by
adding new mules or
adjosting old cnes in the
knowledge base. When
new knowledge is
acquired, changes are

Process knowledge
expressed in the form of
rules and use symbolic
reasoning to solve
problems in a narrow
domain.

Enhance the quality of
problem solving by
changing the program
code, which affects both
the knowledge and its
processing making
changes difficult.

gasy to a-:u:c-rﬂEIish.

Process data and nse
algorithms, a series of
well-defined cperations.
to solve general numerical
problems.

In a human brain,
knowledge exists in a
compiled form.

Provide a clear
separation of knowledge
frem its processing.

Do not separate
knowledge from the
control structore to
process this knowledge.

Capable of explaining a
line of reasoning and
providing the details.

Trace the rules fired
during a problem-solving
session and explain how a
particular conclusion was
reached and why specific
data was needed.

Do not explain how a
particular result was
obtained and why input
data was needed.

Table 4.1 Comparison between human expert, an expert system and a conventional

computer program

UPES |

Page |85

4.4. BUILDING AN EXPERT SYSTEM

There are five members in the expert system development team. They are:

4.4.1. Domain Expert
4.4.2. Knowledge Engineer
4.4.3. Programmer

4.4.4. Project Manager
4.4.5. End user

The success of the developed expert system strongly depends on the extent of the

team work done by them. Figure 4.6 shows the expert system development team
[Roth., 1983].

Source: Negnevitsky, Pearson Education, 2002

aperi Sysiem
evelopment Team %
| Project Manager |
— P
|]
: £ < ™ r
Dﬂmﬁiﬂ% Enowledge Engineer |-'\,"={> Progranumer
i .9 §) b -
Expert Sysiem =£ r
< i 7
:I' End-user
b J

Figure 4.6 Team of Expert system development

UPES |

Page | 86

4.4.1. Domain Expert

Domain expert being a knowledgeable and a skilful person, holding expertise in a
particular domain is a very important asset in the whole process of expert system
development. This expertise is to be captured in the expert system, hence the
domain expert should be able to communicate his or her knowledge, be willing to
participate in the expert system development and commit a substantial amount of

time to the project.

4.4.2. Knowledge Engineer

Knowledge engineer is a person capable of designing, building and testing an
expert system. He or she interviews the domain expert to find out, how a
particular problem can be solved. The knowledge engineer establishes what
reasoning methods the expert uses to handle facts and rules and decides how to
represent them in the expert system. The knowledge engineer, then choose some
software or an expert system development shell or looks at a programming
language for encoding the domain knowledge. He is also finally responsible for

testing, revising, integrating and deploying the expert system into the workplace.

4.4.3. Programmer

Programmer is the person responsible for the actual programming describing the
domain knowledge in terms that a computer can understand. The programmer
should have skills in symbolic programming languages such as LISP, Prolog,
OPSS5 and also some experience in application of expert system shells. In
addition, the programmer should have proficiency in fundamental programming

languages such as C, Pascal, BASIC and FORTRAN.

UPES |

Page | 87

4.4.4 Project Manager

Project manager is the leader of expert system development team and responsible
for keeping the project on track. He makes sure that all the deliverables and
milestones are met, interacts with the knowledge engineer, domain expert,

programmer and the end-user.

4.4.5. End user

End user is the person who is going to use the expert system, after it is developed.
The user must not only be confident in expert system’s performance but also feel
comfortable using it. Therefore, the design of the user-interface of the expert
system is also very vital for the project’s success. The end-user’s contribution in

accepting the design is the crucial factor in the all over process.

4.5 PROGRAMMING LANGUAGES USED IN AVEXPERT SYSTEMS

Expert systems can be written in any programming language but there are a
certain set of languages which are termed as Al languages and these make the
expert system designing and coding easy and fast. Some of the more common
ones are LISP, PROLOG, and OPSS. Writing an expert system from scratch may
require considerable amount of coding and hence it may become quite a time
consuming endeavor. This can be made easy and development can be hastened by

making use of specialized commercial packages called Expert System Shells.

4.6. EXPERT SYSTEM SHELLS

An expert system shell can be viewed as an expert system minus the domain

knowledge. It allows knowledge of a domain to be encoded in a specific format

UPES |

Page |88

and put into the system to create expert systems for different domains. The
advantage of using a shell is that it avoids the need for extensive computer
programming and allows the developer to focus only on the domain knowledge.
This enables even non-computer professionals to create expert systems. [Salim et

al., 2003]

There are a number of expert system shells free as well as commercially available
in the market, which can be down loaded or bought off-the-shelf and customized
by the users, as per their requirements. Few examples are: Aion, Acquire, Attar,
Drools, Clips, Infosapient, Corticon, EXSYS, Jess, JLisa, ILOG Rules, Jena2,
JEOPS, Mandarex, Mindbox, OFBiz, OpenRules, PegaRules, Flex and Pellet etc

[http://www.kbsc.com/rulebase. html].

UPES |

