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CHAPTER 2

REVIEW OF LITERATURE

In early twentieth century, the exploration for petroleum was carried out by
geologists, especially petroleum geologists, whose prime concern was on
geological structure details, and reconstruction of geologic model putting together
the past and present, to be able to provide meaningful inferences regarding
presence of hydrocarbons. The uncertainty involved in choosing potential drilling
sites, and the high expenditure involved provided the suitable environment for use

of seismic surveys in exploration.

The principle use of seismic exploration is to find potential oil and gas traps
primarily by mapping geological structure. It has been a well-acclaimed
geophysical tool for hydrocarbon exploration since 1930s. The field has
continually been in the top research arena ever since then, with regular research

updates.

In seismic exploration, an acoustic energy source radiates elastic waves into the
earth from the surface. On the surface, there are receivers that detect acoustic
energy reflected from geological interfaces within the earth. The recorded data is
put through a series of processing steps in order to reduce its noise component,
and further convert it into a reasonable form fit for analysis and interpretation.
Seismic interpretation process is the interface between the exact mathematics of
seismic data processing and inexact geological reasoning [Denham, 1984]. To
reduce ambiguity of interpretation, he used geological data obtained from

exploration wells along with seismic data.
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The concepts of physics became a prime additional requirement for successful
analysis of seismic records. This gave rise to a new generation of experts, the
‘geophysicists’. The skilled personnel having suitable background of geology and
geophysics took up positions as ‘seismologists’ / ‘seismic interpreters’ , and
worked on interpretation of seismic records to come up with meaningful

inferences concerning sub-surface geology [Sternbach, 2002].

The development of computer technology, with increased sophistication in
recording, processing and displaying techniques, created a perfect environment
for the growth of seismic technology. The availability of multitude of color
coding and printing facilities further added to increased clarity in the

interpretation process.

Digital displays were preferred because of their superior color rendering and
depth effect. But paper displays were still used for practically understanding the
seismic section and interpreting it. It was easier to look at the paper than digital

shows. Moreover the paper display was easier to carry and manage [Sternbach,

2002].

Analytical tools were developed for interpretation once computer processed data
became available. The most elementary but very powerful technique was
statistical cross-correlation of amplitude from one trace with the adjoining trace.
This allowed the user to move across the traces but along the same reflecting
horizon [Herron, 2002]. What appears as reflecting horizons on seismic maps could
be confirmed with this technique. This allowed tracking all significant horizons in

an area with high level of confidence as long as there were no discontinuities.

Cross-correlation techniques used in interpretation ran into trouble when
stratigraphic units differ in thickness or are truncated due to erosion, faulting or
thickness changes from differing rates of sedimentation. Stretching of zones alone

or moving-window correlation, or a combination of both, failed to ensure
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geologically meaningful correlation. Research in this area turned to pattern
recognition of structure and artificial intelligence techniques (Davis et al., 1981),
Bonnet and Dahan, 1983). The difficulty in these approaches is that integrated
induction, reasoning, and judgment of contrary evidence played an essential role
in geological interpretation. The problem is basically an intellectual one, and it
was generally accepted that the common numerical processing techniques cannot
effectively deal with such problems. The key to computer geointerpretation was to
explore the logic of human interpreters and follow this logic in designing the
computer software. The relevant techniques such as pattern recognition, expert
systems, and image analysis have been under development for more than two
decades. A software named “PROSPECTOR system” [Duda et al., 1979] was
developed to provide consultation services for mineral exploration. Although
many other powerful algorithms were published during this time, they could be
applied to the problem with caution, as their underlying axioms did not always
coincide with the way geointerpretation of log data is to be done. A well-log
interpretation system was developed at this time using artificial intelligence
techniques to show what a computerized stratigraphic interpretation system can
do. There were two major subtasks: contact recognition (zonation), and interval

(zone) identification [Wu and Nyland, 1987].

In seismic data interpretation horizon picking is important for structural analysis,
feature recognition and site appraisal. However, horizon picking is still commonly
done by hand, is error-prone and time-consuming. Attempts to automate this
process were hindered due to absence of a clear, robust and universal picking
algorithm. A new method was devised by Harrigan et al., (1992) which combined
a traditional approach to horizon picking with a new technique using a trained
artificial neural network. This method made better use of general properties of
horizons, and is more robust than conventional pattern recognition techniques,
and facilitated a solution to the problem of tracking through conventionally
difficult regions containing faulting and other geophysical anomalies, where

horizons are discontinuous [Harrigan et al., 1992].
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The conventional seismic trace can be viewed as the real component of a complex
trace which can be uniquely calculated under usual conditions. The complex trace
permits the unique separation of envelope amplitude and phase information and
the calculation of instantaneous frequency. These and other quantities can be
displayed in a color-encoded manner which helps an interpreter see their
interrelationship and spatial changes. [Taner et al, 1979]. Additionally, the
instantaneous phase and envelope could also be used to track the horizons even

across faults.

A seismic attribute is a quantitative measure of a seismic characteristic of interest.
These play a significant role in providing information useful in seismic
interpretation. Success of 3D surveys brought popularity to seismic attributes.
Attributes are valuable for gaining insight from the data particularly when
displayed spatially over interpreted horizons. However, all the many attributes
available are not independent pieces of information but, in fact simply represent
different ways of presenting a limited amount of basic information. The key to
success lies in selecting the most applicable attribute for the problem. Moreover,
statistical analysis using attributes must be based on understanding and not simply
on mathematical correlation. The attributes could be poststack, those that are
obtained from stacked and migrated data volume, and loaded on the workstations
or they could be prestack, which means they have been derived from amplitude

variations with offset (AVO) measurements [Brown, 2001].

Advances in seismic technology include voxel pickers (a voxel-based commercial
software) that use multiple criteria of attribute, phase, frequency, and similarity to
create very fast horizons [Meyer et al, 2001]. These works explained how the
interpreter can peel away the seismic reflectors he does not want and highlight the
important parts without putting any hand-driven bias in the interpretation. This is

called as ‘data sculpting’. This is the ability to extract out seismic attributes that
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correlate to hydrocarbons and make the computer do the work of rendering it and

quantifying it [Strenbach, 2002].

During the past 30 years, seismic attributes have evolved beyond simple measures
of amplitude, frequency, and phase to include measures of waveform similarity,
amplitude variation with offset (AVO), spectral content, and structural
deformation. Although neural networks and geostatistics are effective ways of
combining the information content of these many attributes, such analysis cannot
replicate the pattern-recognition capabilities of an experienced interpreter. For this
reason, careful visualization and display of multiple attributes remains one of the
most powerful interpretation tools at our disposal. The two most important color
display models are based on red, green and blue (RGB) or hue, lightness and
saturation (HLS). Transparency/opacity provides a fourth color dimension and
additional attribute modulation capabilities. Sometimes these combinations can be
achieved using commercial voxel-based interpretation software. By careful use of
color and transparency applied to modern volumetric attributes, one can display
the strike of faults and flexures in three dimensions, isolate collapse features, and

quantitatively display the geomorphology and thickness of channels [Guo et al,
2008].

Good seismic attributes and attribute analysis tools are expected to mimic a good
interpreter. Over the past decades, it has been witnessed that attribute
developments have achieved breakthroughs in horizon tracking, reflector
acquisition and mapping, fault identification, bright-spot identification, frequency
loss, thin-bed tuning, seismic stratigraphy and geomorphology. More recently,
interpreters have used cross-plotting to identify clusters of attributes associated
with either stratigraphic or hydrocarbon anomalies. For a computer-assisted
seismic stratigraphy analysis, an interpreter trains the computer on a suite of
structural or depositional patterns and asks the computer to find others like them.
In near future, it should be possible for an interpreter to seed a channel on time

slice, after which the computer paints it in 3D and eventually, we can expect
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computers to be able to duplicate all the repetitive processes performed by an
interpreter. However, it may be difficult for computers to replicate the creative
interpreter imagining depositional environments, structural evolution, diagenetic

alteration, and fluid migration. [Chopra and Marfurt, 2005].

Coherence measures applied to 3D seismic data volumes have proven to be an
effective method, for imaging geological discontinuities such as faults and
stratigraphic features. By removing the seismic wavelet from the data, seismic
coherence offers interpreters a different perspective, often exposing subtle

features not readily apparent in the seismic data [Gersztenkkorn and Marfurt, 1999].

Cross-correlation, semblance, and eigenstructure algorithms have been used to
estimate coherency. The first two algorithms calculate coherency over a
multiplicity of trial time lags or dips, with the dip having the highest coherency
corresponding to the local dip of the reflector. The original eigenstructure
algorithm calculated coherency along an implicitly flat horizon. Although
generalizing the eigenstructure algorithm to search over a range of test dips
allowed to image, coherency in the presence of steeply dipping structures, it was
found that this generalization also degenerated the quality of the fault images in

flatter dip areas [Marfurt et al, 1999].

A more robust, multi-trace, semblance based coherency algorithm allows
analyzing data of lesser quality than the original three-trace cross-correlation
based algorithm. This second-generation, semblance-based coherency algorithm
provides improved vertical resolution over the original zero mean cross-
correlation algorithm, resulting in reduced mixing of overlying or underlying
stratigraphic features using as narrow a time window as possible, typically

determined by highest usable frequency in the input seismic data [Marfurt et al,

1998].
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The automatic tracking of seismic horizons widely available in commercial
software provided first insight into the problem of interpretation automation for
geological faults. It became obvious with horizon auto-trackers that the tracking
frequently breaks down at fault boundaries. There are gaps observed in the
resulting interpreted surface visible as non-picked areas and there are large time
jumps when the auto-tracker picks an erroneous event. When the horizon being
tracked encounters a fault that has a displacement equal in time to some multiple
of dominant frequency, the algorithm is not able to distinguish the alignment of
seismic character across the fault without additional information given regarding
the presence of faulted surface being recognized. Using a larger window,
encompassing more of the wave train could potentially capture the offset on
neighborhood events. Or a more sophisticated approach could use simultaneous

tracking of multiple horizons, reducing the likelihood for misalignment.

Most automatic horizon tracking applications included cross-correlation or
waveform based tracking algorithms to capture the seismic character over a user-
controlled window length. These methods also compute a ‘quality factor’ attribute
associated with the horizon pick position, which gave a further indication
regarding areas of faulting. The combination of interpretation gaps, large gradient
trends, and connected regions of low quality factor produced an excellent visual

isolation of the fault geometry, relative to the background horizon structure.

While the fault expression was made visible from the horizon auto-tracking
method alone, the means to extract this fault information directly and
automatically was not available. A clever approach to isolate the fault information
from an auto-picked horizon was to take the inverse of the surface, that is, show
only areas where the interpretation does not exist. The fault boundaries for the
structural extent of the horizon were clearly visible. This technique is applied to
each surface and then linked from between one surface to the next, if a complete

fault surface is required. It is not really an automatic process, but does allow an
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un-biased extraction of faults from a statistically consistent auto-tracker [Pepper

and Bejarnao, 2005].

In about 1990s there was a community of seismic interpreters who increasingly
adapted to tracking horizons in seismic data, using computer based cross-
correlation techniques like Zap, 3D Hunt etc. These were user-guided programs
basically making use of amplitude similarity. A very good review of the strengths
and weaknesses of this method is provided by Don Herron (2000). One of the
problems with these auto-tracker programs was the cumbersome task of assigning
names to horizons and faults. Further, hand interpretation was appallingly prone
to human and machine contouring error. During this time exploration industry had
a very high demand for software developers to upgrade the current capabilities of

computer-based interpretation [Stenbach, 2002].

Le and Nyland (1990) worked on pattern analysis of seismic records and devised
three steps in the automated analysis of seismic records as trace-matching, event
detection and seismic zoning. The algorithm matches traces by comparing
sequences of neighboring traces and edits pairs of peaks identified as similar for
consistency in trend across and down the record. By combining connected pairs,
the laterally coherent events of varying quality are obtained which divide a record
into zones that may have lithologic significance. These zones can be obtained
automatically by applying cluster analysis to seismic attributes and other

discriminating properties of these events.

Seismic signal processing advanced rapidly during the 1990s, allowing to
approach, the problem of fault interpretation in a similar vein as the horizon
interpretation was attacked. Bahorich and Farmer (1995) presented ‘The
Coherency Cube’ [US Patent Number 5,563,949] technique for imaging
discontinuities. They noted that the fault surfaces are distinctly separated from
neighboring data, both visually and numerically, enabling auto-picking with the

existing horizon auto-tracking software. Lees (1999) directly demonstrated this
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methodology using voxel-picking algorithm on ‘Seismic cube’ processed with a
‘Semblance’ attribute. Crawford and Medwedeff [1999, US Patent Number, 5,987,388]
demonstrated extracting the 3D seismic cube by performing linear feature
detection on lateral slices through the seismic discontinuity volume. These
methods all help us recognize that the fault expression in seismic, after
discontinuity processing, is most visible in the time-slice or horizon-slice
orientations. Neff et al [2000, US Patent Number 6,018,498] introduced a method that
uniquely combined many of these elements by estimating a probability factor that
a fault exists at a specific spatial location using parallel estimation planes, within
the seismic volume, and then following this procedure with an orientation and

extraction method based on linear feature detection on time slices.

These attributes indicated that a vertical seismic section may not be the best
background canvas for fault interpretation. The processing of seismic attributes
highlighted the spatial extent of each fault, allowing accurate manual fault picking
on these time-slice images. By connecting the line interpretation on just a few

time-slices, a high quality fault surface could be constructed.

An early effort for semi-automatic fault interpretation came from Landmark
Graphics Corporation when they introduced FZAP technology in 1997
[Hutchinson; Simpson et al., US Patent Number 5,537,320]. This technique allowed users
to begin their fault interpretation task by simply ‘seeding’ one or more fault
segments on a vertical seismic section, and the automatic operation would
perform a cross-correlation on a series of slanted traces derived parallel to the
seeded fault segment. The method could be used both for tracking, where no
previous fault interpretation existed, or snapping, where an existing fault
interpretation would be corrected based on the slant trace cross-correlation

algorithm. Each fault surface extracted would need an initial seed point.
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The small additional step of executing seeded fault auto-picking on these edge
volumes, has been developed more recently. The reason for this technology delay
may be in the historical approach of using the seismic interpretation workstation
to emulate the ‘paper’ interpretation from previous years. Seismic workstations
have been characteristically used to pick ‘fault sticks’ on vertical seismic sections
and then link the intersection of these fault sticks with the interpreted seismic
horizon to develop fault traces. Fault contacts are transferred from their position
in the vertical seismic section to their spatial position on a basemap for contouring

of the seismic horizon [Pepper and Bejarnao, 2005].

A ‘seedless’ approach to fault segment extraction was presented by van Bemmel
and Pepper [US Patent, 1999, Number5,999,885], where the gaps and sharp gradients
from a horizon interpretation were subjected to a connected body analysis
followed by feature testing to deduce likely fault candidates. Through the analysis

of multiple horizons, the entire fault framework could be extracted.

More than one hundred of seismic attributes have been invented and more appear
each year [Brown, 2001; Chopra and Marfurt, 2005]. Their great number and variety
are daunting and make it difficult to choose which ones to use. Many seismic
attributes duplicate each other, or are obscure, unstable, or unreliable, or are
purely mathematical quantities, or are not really attributes at all. These
unnecessary seismic attributes can be identified through inspection aided by
crossplots, histograms, and correlation. Discarding redundant and useless

attributes leaves a much-reduced set of attributes that is easier to use [Barnes, 2007].

Oil and gas exploration decisions are made based on inferences obtained from
seismic data interpretation. The interpretation task is getting very time-consuming
as seismic data sets become larger. Image processing tools such as auto-trackers
assist manual interpretation of horizons visible boundaries between certain

sediment layers in seismic data. Auto-trackers assume data continuities; therefore,
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their assistance is very limited in areas of discontinuities such as faults [Admasu

and Toennies, 2006].

A new seismic interpretation methodology based on cognitive vision helps in
associating visual characteristics that allow easy identification and detection of
geological objects like horizons, faults etc. This is a successful method and easily

integrated with Shared Earth Modeling workflows [Verney et al, 2008].

With the recent interest and enthusiasm in the industry towards smart wells,
intelligent fields, real-time analysis and interpretation of large amounts of data,
petroleum industry’s need for powerful, robust and intelligent tools has significantly
increased. Operations such as asset evaluation, 3-D and 4-D seismic data
interpretation, complex multi-lateral drilling design and implementation, log
interpretation, the building of geological models, well test design, implementation
and interpretation, reservoir modeling, and simulation are being integrated in order to
facilitate comprehensive reservoir management. In recent years, artificial intelligence,
a branch of computer science, in its many faceted flavors from neural networks to
genetic optimization to fuzzy logic, has been taking solid steps towards becoming
more and more accepted in the main stream of the oil and gas industry. Artificial
Neural Networks have been increasingly used for the process of seismic data
interpretation in many ways [Palaz, 1986; Lacoss et al., 1990]. These systems once
provided with appropriate training on the data sets are capable of working with
unknown data and providing reasonably accurate response. ANN-based models can
assist petroleum engineers in solving some fundamental petroleum engineering
problems, such as formation permeability prediction from geophysical well log
responses with accuracy comparable to actual core analysis and well test
interpretations. They are also capable of addressing case specific problems that may
be encountered in the field [Mohaghegh and Ameri, 1995]. ANNSs are interdisciplinary
information processing techniques rooted in biology, physics, mathematics, and many

other fields of science [Liu and Liuz, 1998].
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The origin of neural networks can be traced back to the 1940s when psychologists
began developing models of human learning, but their use in petroleum industry
is quiet recent. With the advent of the computer age in the 1950s, researchers
began to program neural network models to simulate the complex
interconnections and interactions between neuronal cells in the brain. These
models successfully exhibited various types of human learning behavior.
However, in 1969, Marvin Minsky (Minsky, 1969) one of the founding fathers of
artificial intelligence, showed that the simple neural networks, were incapable of

solving simple problems.

This caused stillness in the neural network research for over a decade. It was not
until 1980s that these mathematical difficulties were surmounted by introduction
of more complex neural network architectures. It was around this time that people
began to realize the potential value of neural networks as general purpose problem
solvers, over and above their use as biological models. Today, there are several
dozen different neural network paradigms available. Neural networks have been
exploited to solve exploration and production tasks that were previously only

done by humans [McCormach, 1991].

The ability of ANNs to track horizons across discontinuities largely depends on
how reliably data patterns characterize these horizons. While seismic attributes
are commonly used to characterize amplitude peaks forming a seismic horizon,
some researchers in the field claim that inherent seismic information is lost in the
attribute extraction process and advocate instead the use of raw data (amplitude
samples). Benbernou and Warwik investigated the performance of ANNs using
both characterization methods (seismic attributes and raw amplitude data), and
demonstrated how the complementarity of both seismic attributes and raw data
can be exploited in conjunction with other geological information in a fuzzy

inference system (FIS) to achieve an enhanced auto-tracking performance

|Benbernou and Warwik, 2007].
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The nonlinearity in engineering systems, the explosion of data, and the fuzziness
of information constituted the basic scientific and technological background for
the rapid development of ANN theory and applications in late nineties. Zhau and
Mendel (1988) presented a seismic signal de-convolution by the Hopfield
Network. Baldwin et al (1989) applied neural network simulators to problems in
well-log interpretation. There was lot of research work done during this time,
applying ANN in fields of seismic data processing, well-log analysis, and gravity
and electrical surveys. All branches of geophysics got significantly benefitted by

the ability of ANNs to perform non-linear mapping and pattern recognition [Liu

and Liuz, 1998].

Pattern recognition feature of ANNs was used in seismic interpretation when the
multilayer percepteron neural network was trained as a classifier and was applied
by Huang (2001) for recognition of three classes of seismic patterns, the bright
spot, pinch-out, and horizontal reflections. Seven moments that are invariant to
translation, rotation and scale, were employed for feature generation of each
seismic pattern. The training set included noise-free, low-noise, and misclassified
seismic patterns. The test set included seismic patterns with various noise levels.
The multilayer percepteron was initially trained with the training set of noise-free
and low-noise seismic patterns. Some misclassified patterns with higher noise
level were added to the training set for retraining. The classification and training
process was repeated through several stages. This retraining significantly
improved the robustness of the network. The converged network at each training
stage was applied to the real seismic data at Mississippi Canyon, and the bright
spot pattern was detected after retraining at higher noise level. These experiments
showed the capability of multilayer percepteron in recognition of seismic patterns

[Huang, 2001].
Li from University of Saskatchewan, Canada presented multi-attributes pattern

recognition for reservoir prediction (Li, 2008). He described a new classification

technique to recognize and predict reservoirs from seismic data using support
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vector machine (SVM) pattern recognition. As the method is data-driven it is
especially suitable for use with non-linear multiple-attributes. The method has
good generalization ability for cases where the populations are small. Li applied
this technique to a 3D seismic dataset for the ‘Large Save’ oilfield. SVM was
trained using 3D seismic multiattributes at known well locations with well test
results. The resulting SVM structure was used to make predictions away from the
wells. It was demonstrated that this method is less subject to overtraining

difficulties and can be used to distinguish between oil and gas reservoirs [Li, 2008].

Al (Artificial Intelligence) methods have been used to successfully match all the
selected horizons across normal faults in typical seismic images. Work done by
Aurnhammer and Tonnies described a model based approach which reduces
uncertainties in horizon correlation across faults by introducing global features
based on geological constraints. Two optimization methods were examined, an
exhaustive search algorithm that reliably delivers the optimal solution and the

genetic algorithm [Aurnhammer and Tonnies, 2000].

Expert systems are truly the commercial exploitation of the power of Al. Edward
Feigenbaum has been considered as father of Expert Systems. A new conceptual
approach was presented by Whitney to show use of expert systems to assist in
decision making process [Whitley, 1990]. Main objective of the expert systems is to
gather expert knowledge, represent it in appropriate format and make use of it like
a human expert to take decisions. The system is also made capable of providing

justifications and explanations for the decisions taken [Angeneyulu, 1998].

Era of expert systems began with the development of MY CIN used for diagnosing
infectious blood diseases. Researchers have since then considered explanation to
be one of AI's most valuable contributions. The user’s confidence in the derived
conclusion can be significantly increased by revealing internal rules that led to it.
MYCIN also had a very well organized mechanism of providing explanations for

the diagnosis. The explanation queries of MYCIN form the foundation of most
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expert system explanation systems today. MYCIN presented two forms of
explanation — why and how. Users may ask why the system asks a particular
question. The system may respond by indicating the rule that it is currently
considering. The users may further desire to know, how a system has come up
with a particular conclusion, and the expert system needs to justify its conclusion

by putting forth, the line of reasoning it has followed [Wick and Slagle, 1989].

Object-oriented Modular Expert System Shell (OOMESS) is an expert system
shell which was designed with the objective of integrating a production system
with object-oriented language. The OOMESS presents itself in the form of a
collection of objects with the capability to communicate with each other. It
provides system support for the modularization of a large rule base into smaller
groups through message passing. The functionality provided by OOMESS
includes the accessibility of other rule groups, user-defined objects and the
underlying language from the production rules of a rule group [Cheon Na et al.,

1990].

Object oriented design of an expert system was presented by Xu and coworkers in
1994 through a Synergetic Expert System for Fault Diagnosis (SESFD). SESFD
was composed of four sub-ordinate expert systems (SES) and a Meta expert
system (MES) [Xu et al, 1994]. Another expert system using object-oriented
framework was developed by Tsang in 1994 for medical domain. This system

presented a generic framework for complex medical expert system inference

[Tsang, 1994].

There are a few formats that have been popular for knowledge representation.
One of the methods preferred for representing knowledge in large knowledge-
bases is a frame-based representation of facts and rules. Such systems typically
connect to external databases that store facts that are loaded into knowledge-base
and inference is reached by the inference engine of the expert system. In many

cases, such external facts may be required several times for each inference.
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Rattanaprateep and Chittayasothorn presented design and implementation of a
frame-based object-relational database with a tight coupling between the expert

system and the external knowledge-base [Rattanaprateep and Chittayasothorn, 2007].

Mendis and coworkers (2009) presented a three phase approach to the
development of commonsense knowledge modeling systems for disaster
management. Modeling commonsense knowledge is crucial for classifying and

presenting unstructured knowledge [Mendis et al., 2009].

The applications of expert systems have been in diverse areas. A few assorted
examples are included in what follows. Tourist Advisor system is an object
oriented intelligent expert system for the tourist information centers. This system
was built to recommend a suitable travel schedule that satisfies user input
constraints such as time period, budget and preferences. The tourist center
officials need to answer similar set of queries in their day-to-day work which has

been replaced by this system [Tsang and Woo, 1996].

Expert System’s capability to effectively present itself like an education tool was
demonstrated by an expert system developed to aid the teaching of digital
electronics. The techniques described in this system have been adapted to a
variety of other similar applications [Saatchi et al., 1998]. Another similar system
developed was a knowledge-based tutoring system for teaching fault analysis to
electrical engineering students. The aim of this project was to make teaching and
learning more productive and efficient by employing modern technologies. It
seeks to find new methods to teach large number of students with no prior
fundamental background in the field. The system operates in an active dialog
mode with the student, using examples, and providing immediate explanations
and feedback to students. It also allows the students to access the learning facility
at a time of their convenience. The tutoring system is based on an expert system

shell. It provides a functionally interacting set of theory and problems, and
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supports student progress through monitoring and assessment. This tool has

become an extra teaching tool for power engineering students [Negnevitsky, 1998].

Another general purpose expert system was a web-based, ‘Class Schedule
Planner’ (CSP) using Java based expert system shell JESS, for the purpose of
Class Schedule Planning. Making a class schedule for next semester that takes
into account student’s interests and meets overall graduation requirements within
a time frame is not always easy. An automated tool can help identify mistakes and
compare available options. CSP encapsulates class scheduling knowledge and
gives intelligent scheduling advises to students. It has a set of web forms to
collect inputs from the users and then translates the request into facts. The unique
technical contribution of this work was that unlike most other expert systems that
require static expert knowledge, this expert system allows dynamic management

of knowledge in real time using web interface [Ho and Lu, 2005].

Salim and coworkers presented a method called Function Point Analysis (FPA)
for evaluation of expert system shells for suitability in Industrial Technology
pedagogy. Two types of FPA are described, a direct method in which the Expert
System Shell software itself is evaluated and an indirect method in which only the
specification of the software is evaluated. Both methods presented are simple and
straightforward and have been used by the industrial technology educators with

no specialized background in Information Technology and Software Engineering

[Salim et al., 2002].

Expert systems have wide variety of applications such as in diagnostics and
control in the Power Industry. Jain and coworkers presented this system with its
GUI, Expert System Shell, and the databases developed by integrating the
standardized technologies, such as C#.net, ASP.net, Ms Access Database tools
and the dynamic linking library (DLL) files. The knowledge-base required for this
package presents extensive data obtained from discussions with experts in

different domains of electrical factory and the past historical data of fault

UPES |



Page |31

occurrences and their clearance at the factory in the form of simple ‘if...then’

rules [Jain et al., 2009]

Expert systems have been used for evaluating the actual state and future behavior
of insulating systems of high voltage electrical machines and equipment.
IZOLEX, expert system evaluates high voltage insulating systems of rotating and
non-rotating machines and insulating oils. The expert system, CVEX, evaluates
the discharge activity on high voltage electrical machines and equipment by
means of an off-line measurement. The expert system, CVEXON is for evaluating
the discharge activity by on-line measurement and the ALTONEX expert system

is for on-line monitoring of rotating machines [Zalis, 2004].

A rule-based expert system was designed for steady-state stability analysis of a
power system. The key variables, that affect steady-state stability the most, were
identified through discussions with operators and engineers in Taiwan Power

Company [Hsu and Su, 1991].

Use of expert systems has been popular in financial institutions, such as banks,
and in areas of savings and loans. A rule-based expert system was designed to
optimize check routing with respect to processing costs and fund availabilities.
The system was developed on IBM AY400 system using IBM’s Knowledge Tool.
The actual knowledge elicitation had involved a number of item processing

experts known as ‘float managers’ [Chamberlin et al., 1990].

Various expert system applications have been developed in Civil engineering
domain. One of the knowledge representation methods in expert systems design is
Case-based Reasoning. To solve a new problem by remembering a previous
similar situation and by reusing information and knowledge of that situation is the
principle behind this representation. A system which uses case-based reasoning in
selecting the best bidder for a construction job in an organization was developed

by Bhattacharya and Raju (1990).
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Another Expert system developed in the field of civil engineering was an
interactive expert system called Structural Selection Expert System (SSE) that
assists engineers and designers in the choice of the most appropriate structural
system for a particular function to meet proposed criteria. It could also be used as

a teaching aid for architecture, civil engineering and structural design students.

|Golabchi., 2008].

Traditional Expert Systems are constructed using a single monolithic software
program for a specific application. But when the systems are to be designed for
complex and critical requirements, then there is a demand for sophisticated expert
system technology. Kumar and coworkers discussed construction of an expert
system shell for airborne equipment design. As the present aircrafts take in
different equipments for different purposes, it is not feasible to think in terms of
independently developed monolithic expert system programs for each of the
equipment. To overcome these problems, a complex, competent, generic
component based expert system was designed and developed for Airborne

Equipment Design [Kumar et al., 2004].

Selecting appropriate tools for car assembly lines usually demands hours or even
days of expert tool engineers consulting catalogues, examining the joint properties
and studying technical guidelines or specifications. The main stream studies in
this field have been limited to geometrical accessibility analysis of the joints and
despite crucial effect of many other tool parameters, these are rarely taken into
account. But Milani and Hamedi, (2008) developed a knowledge-based system
where majority of these selection parameters have been considered that help to

make the tool assignment process more realistic.
One field which has exploited the functionalities of the expert systems is that of

Medical Sciences. Pazzani and Iyer (1997), developed a knowledge-based system
for the management of HIV infected patients. CTSHIV (Customized Treatment
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Strategies for HIV) is a rule-based expert system that recommends an
individualized treatment strategy for HIV patients. Since, the HIV virus mutates
rapidly, a patient can develop a resistance to particular antiretroviral agents.
CTSHIV contains a knowledge-base that encodes information from the medical
literature on drug-resistant mutations. It also contains additional rules that rank
and weight combinations of antiretroviral agents based upon antiviral activities,
redundant mechanisms of action, and overlapping toxicities [Pazzani and Iyer.,

1997].

Crain’s ‘Petro-physical Handbook’ has described several expert systems that were
developed from 1970 onwards for use of mineral and oil prospecting. One of the
expert systems, that was developed 1970s, for log analysis enables the technician
to perform complex analyses which, in the past, could only be done with the
assistance of a human expert. The knowledge which an analyst brings to bear on a
specific problem is very specific to the region being analyzed, and therefore a
considerable amount of local knowledge was required for successful analysis.
This information was gathered and added to the knowledge base of the expert
system. The rules can be classified in one of the three categories: Usage rules,
which dictate which method is the best choice for a given data set in a given area,
parameter selection rules, which indicate which parameters are to be chosen for
analysis, and ‘what if” or iterative rules, which help to try alternative methods or
assumptions if results were not acceptable on the first attempt. The facts in this
system are the known details about the rocks or fluids being analyzed. The
heuristics include mathematical rules. The inference engine of the expert system
applies these rules comes up with decisions and can display the reasons behind
following a particular path, thus overcoming the drawback of a conventional

programming system.
In the 1980s an expert system called PROSPECTOR was developed. It was

provided with geological, geophysical and geochemical information as input

which was supplied by a group that had just terminated exploration of site at Mt.
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Tolman in Washington in 1978. PROSPECTOR analyzed these data and
suggested that a previously unexplored portion of the site probably contained an
ore-grade porphyry molybdenum deposit. Subsequent exploratory drilling
confirmed the deposit and thus, PROSPECTOR became the first knowledge-
based system to achieve a major commercial success. The weakest part of
PROSPECTOR’s performance was its failure to recognize the full extent of the

deposit it identified [Crain’s Petro-physical handbook, 2005].

FACIOLOG is one of the open-hole analysis expert system that is used to
generate a rock facies description from the electrical log measurements. It works
well where rock sample descriptions are available to aid calibration. ELAS is an
expert system front end for Amoco’s interactive log analysis package, which runs
on an IBM mainframe-terminal configuration. The front end was written with the
EXPERT tool, and is used to prompt a user through the log analysis steps of the
interactive program. Both EXPERT and INLAN, Amoco’s interactive log
analysis packages were written in FORTRAN. MUDMAN is a program
developed by NL Baroid Corp. to assist mud engineers in the field. The inputs to
MUDMAN include the specifications of the type of mud needed in a particular
well and the chemical and physical properties of the mud. MUDMAN compares
the specifications to the actual properties, provides an analysis of drilling
problems, and recommends corrective treatments. It was written in OPS5 on DEC
computers. Baroid has described MUDMAN as the first expert system sold as a

commercial product to the oil industry [CRAIN’s Petro-physical handbook, 2005].

A fuzzy expert system was developed to solve lost circulation problems

[Sheremetov et al, 2005] called Smart-Drill.

A significant development has been a dip-meter advisor system which aids
interpreters and attempts to emulate human expert performance in an important
and specialized oil well-log interpretation [Davis et al., 1981, Smith and Baker, 1983].

Another expert system, Laser Drilling System Optimizer (LDSO) was developed
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for laser drilling which resulted in better and faster performance than the

conventional rotary drilling technique. [Ketata et al., 2005]

Al based Fuzzy logic plays a predominant role in handling ambiguous drilling
scenarios. This strategy was used in designing expert system for screening wells
that could be drilled underbalanced, and for aiding in the preliminary selection of
appropriate underbalanced drilling fluids for a given range of wellbore and

reservoir conditions [Ali et al., 2001].

SEISIS is a knowledge-based expert system for the automatic segmentation of
seismic sections into large regions of common textural properties [Simaan et al.,
1995]. Another system on similar lines has been a rule based system for automatic

seismic discrimination [His-Ho Liu, 1985].

Remote sensing tools have been extensively used in exploring for various
geological and mineral resources. Provided that proper imagery is selected for
intended applications, valuable and cost-effective investigations can be made.
But, one of the most important factors required to reach the correct interpretation
is the expertise factor which is expensive or, even worse, unavailable at times. An
experimental prototype expert system was developed by Al-garni and Al-sari, in
Saudi Arabia. The system consists of a resident knowledge-base that can totally or
partially be activated as working memory. The knowledge-base has been
developed as a rule-based system using a LISP based language in a frame

representation [Al-garni and Al-sari., 1994].

Once reasonably powerful and useful expert systems started being available, the

questions about their security, validity and maintainability, started appearing

[O’Leary, 1990; O’Leary et al., 1990; Chee and Power, 1990].

Fuzzy logic is one of the methods to represent the uncertainty of information and
there exist in the literature today many contributions dealing with the

incorporation of fuzzy logic in expert systems. Initially, fuzzy logic for
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uncertainty reasoning was common in small-scale expert systems where number
of rules is in the dozens as opposed to hundreds. The more traditional (non-fuzzy)
expert systems are able to cope with large numbers of rules by using Rete
networks for maintaining matches of all the rules and all the facts. (A Rete
network obviates the need to match the rules with the facts on every cycle of the
inference engine). Pan and coworkers presented a more general Rete network that
is particularly suitable for reasoning with fuzzy logic in a large scale expert
system shell. The generalized Rete network consists of a cascade of three
networks: the pattern network, the join network, and the evidence aggregation
network. The first two layers are modified versions of similar layers for the
traditional Rete networks and the last, the aggregation layer, is a new concept that
allows fuzzy evidence to be aggregated when fuzzy inferences are made about the

same fuzzy variable by different rules [Pan et al., 1998].

Artificial Neural Network models can be used to model certain highly non-linear
and complex systems. The standalone neural networks have been used in many
geophysical systems, but McCormach combined the neural network models with
expert systems and conventional programs that take advantage of sophisticated
pattern recognition capabilities [MecCormach., 1991]. Wiriyacoonkasem and
Esterline presented a comprehensive work indicating the improvement in the
performance of an expert system through the use of a neural network, allowing
the expert system to learn from experience. Training an expert system to ask
questions and reason, over repeated cycles, makes it to avoid asking irrelevant
questions and proceed with enough knowledge to reason [Wiriyacoonkasem and

Esterline, 2000].

Quah and Tan (1994) presented architecture of a hybrid neural network expert
system shell. The system was structured around the concept of ‘network element’
and was aimed at preserving semantic structure of the expert system rules whilst
incorporating learning capability of neural networks into the inferencing

mechanism. Using this architecture, every rule of the knowledge-base was
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represented by a one or two layer neural network element. These network
elements were dynamically linked up to form the rule-tree during inference
drawing process. The system was also able to adjust its inference strategy
according to different users and situations. A rule editor provided enabled easy

maintenance of neural network rule elements.

With increasing popularity of expert systems being used in a variety of fields,
researchers started thinking in terms of a common approach, a platform on which
different applications in diverse disciplines could be developed. This gave rise to

development of expert system shells.

Yalginalp and Sterling presented an approach of building embedded languages in
Prolog, with special attention on expert system shells. Their work presented the
paradigm of meta-programming and reviewed interpreters for embedded

languages [Yalqinalp and Sterling, 1990].

Nilsen (1990) presented some general experiences made while using expert
system shell G2. This shell was used for a particular application, namely a safety
assessment and post-trip guidance system intended for the control room of the
Forsmark Unit 2 nuclear power plant in Sweden. The main emphasis of the

presentation was on real-time aspects and matters concerning data types

AGNESS is an expert system shell developed at the University of Minnesota. It is
more general than other shells in that it uses a computation network to represent
expert defined rules, and can handle any well-defined inference method. The
system works with non-numeric as well as numeric data and shares constructs
whenever possible to achieve increased storage efficiency. AGNESS uses a
menu-driven interface and has several features that make the system friendly and
convenient to use. It was subsequently used to generate several expert systems in

the areas of medicine, image processing and mechanical engineering [Slagle, 1988].
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In 1997, Johnson and Carlis, examined the syntactic similarities and differences
of five expert system shell production rule languages. To help knowledge-
engineers manage information, they developed a composite production-rule
syntax that provides a common language for defining production rules [Johnson

and Carlis, 1997].

‘Flex’ (from Logic Programming Associates, UK) is a powerful and versatile
expert system. It offers an open-ended knowledge-based solution to business
problems. Flex is implemented in Prolog, a high-level rules-based language, and
has unlimited access to the power of that underlying technology. It employs a
natural language style approach to defining knowledge through the provision of a
dedicated Knowledge Specification Language, KSL [Spenser, 2004].

As discussed in this chapter we can see that expert systems and even rule-based
expert systems have been developed in several areas but none has appeared in
open literature on seismic data interpretation. Although auto horizon picking
programs, fault recognition programs and several other pieces of software have
been developed to deal with specific problems but there appears to be no attempt
to develop an overall expert system to interpret the entire seismic maps. This
served as motivation to undertake the present exercise where a first step has been

taken. An all encompassing prototype is perhaps a few steps away.
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